This article contributes to advancing the knowledge on the phenomenon of the most popular short-term rental platforms, Airbnb. By implementing a geographically weighted regression (GWR) and its multiscale form, MGWR, we examine the relationship between Airbnb locations and the core elements of urban tourism including hotels, food and beverages (F&B) venues, as well as access to public transport. This article's contributions are twofold: methodological and empirical. First, the results show that incorporating localities improve overall model performance. It allows us to account for the nuance of each area of interest as the MGWR performs slightly better than the GWR in the case of spatially sparse data. Second, both models show that Airbnbs collocate with hotels supported by various amenities, but Airbnbs also go beyond traditional hotel zones. This analysis highlights and extends the latter where Airbnb concentrations are those for which there are strong associations with F&B establishments and access to public transports. This suggests that Airbnbs might benefit local businesses outside the reach of major tourist zones. However, there is further work to be done to understand whether the economic benefit to the local economy is worth the associated social costs raised by previous studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.