Filamentous fungi produce a wide range of bioactive compounds with important pharmaceutical applications, such as antibiotic penicillins and cholesterol-lowering statins. However, less attention has been paid to fungal secondary metabolites compared to those from bacteria. In this study, we sequenced the genomes of 9 Penicillium species and, together with 15 published genomes, we investigated the secondary metabolism of Penicillium and identified an immense, unexploited potential for producing secondary metabolites by this genus. A total of 1,317 putative biosynthetic gene clusters (BGCs) were identified, and polyketide synthase and non-ribosomal peptide synthetase based BGCs were grouped into gene cluster families and mapped to known pathways. The grouping of BGCs allowed us to study the evolutionary trajectory of pathways based on 6-methylsalicylic acid (6-MSA) synthases. Finally, we cross-referenced the predicted pathways with published data on the production of secondary metabolites and experimentally validated the production of antibiotic yanuthones in Penicillia and identified a previously undescribed compound from the yanuthone pathway. This study is the first genus-wide analysis of the genomic diversity of Penicillia and highlights the potential of these species as a source of new antibiotics and other pharmaceuticals.
Previous microbiome and metabolome analyses exploring non-communicable diseases have paid scant attention to major confounders of study outcomes, such as common, pre-morbid and co-morbid conditions, or polypharmacy. Here, in the context of ischemic heart disease (IHD), we used a study design that recapitulates disease initiation, escalation and response to treatment over time, mirroring a longitudinal study that would otherwise be difficult to perform given the protracted nature of IHD pathogenesis. We recruited 1,241 middle-aged Europeans, including healthy individuals, individuals with dysmetabolic morbidities (obesity and type 2 diabetes) but lacking overt IHD diagnosis and individuals with IHD at three distinct clinical stages—acute coronary syndrome, chronic IHD and IHD with heart failure—and characterized their phenome, gut metagenome and serum and urine metabolome. We found that about 75% of microbiome and metabolome features that distinguish individuals with IHD from healthy individuals after adjustment for effects of medication and lifestyle are present in individuals exhibiting dysmetabolism, suggesting that major alterations of the gut microbiome and metabolome might begin long before clinical onset of IHD. We further categorized microbiome and metabolome signatures related to prodromal dysmetabolism, specific to IHD in general or to each of its three subtypes or related to escalation or de-escalation of IHD. Discriminant analysis based on specific IHD microbiome and metabolome features could better differentiate individuals with IHD from healthy individuals or metabolically matched individuals as compared to the conventional risk markers, pointing to a pathophysiological relevance of these features.
sample sizes and a high resolution of clinical phenotypes and medication are required, while accounting for variables known to affect the gut microbiome. Finally, drug effects are often dose-dependent, yet dosage is rarely considered in microbiome studies.To overcome these limitations, we propose a general framework for separating disease from treatment associations in multi-omics cross-sectional studies and apply it to gut metagenomic, host clinical and metabolomic measurements of 2,173 European residents from the multicentre MetaCardis cohort. The MetaCardis cohort includes patients with metabolic syndrome, severe and morbid obesity, T2D, acute and chronic coronary artery disease and heart failure, and healthy control individuals. Considering cardiometabolic disease (CMD) and herein frequently prescribed medications, we investigated drug-hostmicrobiome associations for eight major indications (antidiabetic,
The human gut microbiota alters with the aging process. In the first 2-3 years of life, the gut microbiota varies extensively in composition and metabolic functions. After this period, the gut microbiota demonstrates adult-like more stable and diverse microbial species. However, at old age, deterioration of physiological functions of the human body enforces the decrement in count of beneficial species (e.g. Bifidobacteria) in the gut microbiota, which promotes various gut-related diseases (e.g. inflammatory bowel disease). Use of plant-based diets and probiotics/prebiotics may elevate the abundance of beneficial species and prevent gut-related diseases. Still, the connections between diet, microbes, and host are only partially known. To this end, genome-scale metabolic modeling can help to explore these connections as well as to expand the understanding of the metabolic capability of each species in the gut microbiota. This systems biology approach can also predict metabolic variations in the gut microbiota during ageing, and hereby help to design more effective probiotics/prebiotics.
BACKGROUND Identifying factors conferring responses to therapy in cancer is critical to select the best treatment for patients. For immune checkpoint inhibition (ICI) therapy, mounting evidence suggests that the gut microbiome can determine patient treatment outcomes. However, the extent to which gut microbial features are applicable across different patient cohorts has not been extensively explored. METHODS We performed a meta-analysis of 4 published shotgun metagenomic studies ( N tot = 130 patients) investigating differential microbiome composition and imputed metabolic function between responders and nonresponders to ICI. RESULTS Our analysis identified both known microbial features enriched in responders, such as Faecalibacterium as the prevailing taxa, as well as additional features, including overrepresentation of Barnesiella intestinihominis and the components of vitamin B metabolism. A classifier designed to predict responders based on these features identified responders in an independent cohort of 27 patients with the area under the receiver operating characteristic curve of 0.625 (95% CI: 0.348–0.899) and was predictive of prognosis (HR = 0.35, P = 0.081). CONCLUSION These results suggest the existence of a fecal microbiome signature inherent across responders that may be exploited for diagnostic or therapeutic purposes. FUNDING This work was funded by the Knut and Alice Wallenberg Foundation, BioGaia AB, and Cancerfonden.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.