Cognitive deficits are very common in Parkinson's disease particularly for ‘executive functions’ associated with frontal cortico-striatal networks. Previous work has identified deficits in tasks that require attentional control like task-switching, and reward-based tasks like gambling or reversal learning. However, there is a complex relationship between the specific cognitive problems faced by an individual patient, their stage of disease and dopaminergic treatment. We used a bimodality continuous performance task during fMRI to examine how patients with Parkinson's disease represent the prospect of reward and switch between competing task rules accordingly. The task-switch was not separately cued but was based on the implicit reward relevance of spatial and verbal dimensions of successive compound stimuli. Nineteen patients were studied in relative ‘on’ and ‘off’ states, induced by dopaminergic medication withdrawal (Hoehn and Yahr stages 1–4). Patients were able to successfully complete the task and establish a bias to one or other dimension in order to gain reward. However the lateral prefrontal cortex and caudate nucleus showed a non-linear U-shape relationship between motor disease severity and regional brain activation. Dopaminergic treatment led to a shift in this U-shape function, supporting the hypothesis of differential neurodegeneration in separate motor and cognitive cortico–striato–thalamo–cortical circuits. In addition, anterior cingulate activation associated with reward expectation declined with more severe disease, whereas activation following actual rewards increased with more severe disease. This may facilitate a change in goal-directed behaviours from deferred predicted rewards to immediate actual rewards, particularly when on dopaminergic treatment. We discuss the implications for investigation and optimal treatment of this common condition at different stages of disease.
Although progressive supranuclear palsy is defined by its akinetic rigidity, vertical supranuclear gaze palsy and falls, cognitive impairments are an important determinant of patients’ and carers’ quality of life. Here, we investigate whether there is a broad deficit of modality-independent social cognition in progressive supranuclear palsy and explore the neural correlates for these. We recruited 23 patients with progressive supranuclear palsy (using clinical diagnostic criteria, nine with subsequent pathological confirmation) and 22 age- and education-matched controls. Participants performed an auditory (voice) emotion recognition test, and a visual and auditory theory of mind test. Twenty-two patients and 20 controls underwent structural magnetic resonance imaging to analyse neural correlates of social cognition deficits using voxel-based morphometry. Patients were impaired on the voice emotion recognition and theory of mind tests but not auditory and visual control conditions. Grey matter atrophy in patients correlated with both voice emotion recognition and theory of mind deficits in the right inferior frontal gyrus, a region associated with prosodic auditory emotion recognition. Theory of mind deficits also correlated with atrophy of the anterior rostral medial frontal cortex, a region associated with theory of mind in health. We conclude that patients with progressive supranuclear palsy have a multimodal deficit in social cognition. This deficit is due, in part, to progressive atrophy in a network of frontal cortical regions linked to the integration of socially relevant stimuli and interpretation of their social meaning. This impairment of social cognition is important to consider for those managing and caring for patients with progressive supranuclear palsy.
ObjectiveDifferentiating idiopathic Parkinson's disease from atypical parkinsonian syndromes is challenging, especially in the early stages. We assessed whether the Revised Addenbrooke's Cognitive Examination (ACE-R) could differentiate between parkinsonian syndromes and reflect longitudinal changes in cognition in these disorders.MethodsThe ACE-R was administered at baseline and after approximately 18 months to 135 patients with parkinsonian disorders: 86 with idiopathic Parkinson's disease (PD), 30 with progressive supranuclear palsy (PSP), 19 with corticobasal degeneration (CBD). We assessed differences between groups for ACE-R, ACE-R subscores and Mini Mental State Examination (MMSE) scores at baseline (analyses of variance, receiver operating characteristics curves), and the interaction between diagnosis and change in ACE-R scores between visits (analyses of variance).ResultsThe ACE-R verbal fluency subscore distinguished between PSP and PD with a high sensitivity (0.92) and specificity (0.87); total ACE-R score and the visuospatial subscore were less specific (0.87 and 0.84 respectively) and sensitive (0.70 and 0.73). Significant group level differences were found between PD and PSP for MMSE and ACE-R (total score and subscores for attention and concentration, fluency, language, and visuospatial function), and between PD and CBD for the ACE-R visuospatial subscore. Performance worsened between visits for ACE-R score in PD (p=0.001) and CBD (p=0.001); visuospatial subscore in PD (p=0.003), PSP (p=0.022) and CBD (p=0.0002); and MMSE in CBD (p=0.004).ConclusionsWe propose the ACE-R, particularly the verbal fluency subscore, as a valuable contributor to the differential diagnosis of parkinsonian syndromes in the correct clinical context. The ACE-R may reflect disease progression in PD and CBD.
Abnormalities of tau protein are central to the pathogenesis of progressive supranuclear palsy, whereas haplotype variation of the tau gene MAPT influences the risk of Parkinson disease and Parkinson's disease dementia. We assessed whether regional MAPT expression might be associated with selective vulnerability of global brain networks to neurodegenerative pathology. Using task-free functional magnetic resonance imaging in progressive supranuclear palsy, Parkinson disease, and healthy subjects (n = 128), we examined functional brain networks and measured the connection strength between 471 gray matter regions. We obtained MAPT and SNCA microarray expression data in healthy subjects from the Allen brain atlas. Regional connectivity varied according to the normal expression of MAPT. The regional expression of MAPT correlated with the proportionate loss of regional connectivity in Parkinson's disease. Executive cognition was impaired in proportion to the loss of hub connectivity. These effects were not seen with SNCA, suggesting that alpha-synuclein pathology is not mediated through global network properties. The results establish a link between regional MAPT expression and selective vulnerability of functional brain networks to neurodegeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.