In recent years, increasing attention has been paid to the origin, transmission and communication of silk. However, this is still an unsolved mystery in archaeology. The identification of silk-producing species, especially silk produced by Bombyx mori ( B. mori ) and Antheraea pernyi ( A. pernyi ), is of key significance to address this challenge. In this study, two innovative methods, i.e. immunology and proteomics, were proposed and successfully established for the species identification of silks. ELISAs result demonstrated that the two prepared antibodies exhibited high sensitivity and specificity in distinguishing B. mori and A. pernyi silk. No cross-reactivity with each other was observed. Moreover, biomarkers were obtained for Bombyx and Antheraea through proteomic analysis. It was also confirmed that the biomarkers were suitable for identifying the species that produced a given silk sample. Compared with conventional methods for distinguishing silk species, immunological and proteomics techniques used in tandem can provide intact information and have the potential to provide accurate and reliable information for species identification.
Species identification is of key significance for exploring the origin and transmission of ancient silks. In this study, two novel methods, i.e. western blot (WB) and proteomics analyses, were proposed and established to identify the differences between silks from Bombyx mori (B. mori) and two other distinctive species (Eri silkworm and Chestnut silkworm). Three diagnostic antibodies, a polyclonal anti-silk fibroin (anti-SF) antibody (pAb), a polyclonal anti-SF-specific peptide antibody (pAsb), and a monoclonal anti-SF antibody (mAb) were designed and prepared to distinguish silk species using the antibody-based WB technique. Proteomics analysis by liquid chromatography-tandem mass spectrometry was performed to further identify silk species at the protein level. WB results indicated that the three antibodies showed high specificity and affinity and could discern B. mori silk from Eri and Chestnut silks. Biomarkers for each SF were obtained using proteomics analysis, and they have the potential to serve as standards for identifying silk species. Thus, combining WB and proteomics analyses with conventional methods can provide more accurate silk information and may be suitable for identifying other proteinaceous materials in archaeological field.
Pien Tze Huang (PZH) is a well-known traditional Chinese formulation and has long been used as an alternative remedy for cancers in China and Southeast Asia. Recently, antitumor activity of PZH on several tumors have been increasingly reported, but its antitumor activity and the possible action mechanism on osteosarcoma remains unclear. After treatment with PZH, cell viability of MG-63 cells was dose-dependently inhibited compared to control cells. Moreover, a DNA ladder characteristic of apoptosis was observed in the cells treated with PZH, especially 500 µg/mL, 750 µg/mL. Further investigation showed that PZH treatments led to activation of caspase cascades and changes of apoptotic mediators Bcl2, Bax, and Bcl-xL expression. In addition, our results suggested that PZH activated PI3K/Akt signal pathway, and the phosphorylation of Akt and ERK1/2 were associated with the induction of apoptotic signaling. These results revealed that PZH possesses antitumoral activity on human osteosarcoma MG63 cells by manipulating apoptotic signaling and multiple pathways. It is suggested that PZH alone or combined with regular antitumor drugs may be beneficial as osteosarcoma treatments.
Hybrid quantum particle swarm optimization algorithm and its application SCIENCE CHINA Information Sciences 63, 159201 (2020); An adaptive hybrid optimizer based on particle swarm and differential evolution for global optimization SCIENCE CHINA Information Sciences 53, 980 (2010); A hybrid dynamic programming-rule based algorithm for real-time energy optimization of plug-in hybrid electric bus SCIENCE CHINA Technological Sciences 57, 2542 (2014); Multi-mode energy management strategy for hydraulic hub-motor auxiliary system based on improved global optimization algorithm SCIENCE CHINA Technological Sciences SCIENCE CHINA Information Sciences
Vacuum-ultraviolet laser ablation of Teflon is reviewed. The 157 nm irradiation of Teflon produces clean ablation sites well suited to micromachining applications in the electronics and medical fields. At 193 nm, etching profiles are poorly defined, showing swelling characteristics commonly produced by longer wavelength lasers. Comprehensive new 193 nm ablation data are presented showing the first evidence of incubation effects for Teflon. A computer model was developed to include ablation, swelling and incubation processes. The computer results satisfactorily model the experimental data over a large fluence range of 0.6 to 13 J/cm2 with three adjustable parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.