Bradykinin (BK) is an inflammatory mediator and one of the most potent endogenous pain-inducing substances. When released at sites of tissue damage or inflammation, or applied exogenously, BK produces acute spontaneous pain and causes hyperalgesia (increased sensitivity to potentially painful stimuli). The mechanisms underlying spontaneous pain induced by BK are poorly understood. Here we report that in small nociceptive neurons from rat dorsal root ganglia, BK, acting through its B 2 receptors, PLC, and release of calcium from intracellular stores, robustly inhibits M-type K + channels and opens Ca 2+ -activated Cl -channels (CaCCs) encoded by Tmem16a (also known as Ano1). Summation of these two effects accounted for the depolarization and increase in AP firing induced by BK in DRG neurons. Local injection of inhibitors of CaCC and specific M-channel openers both strongly attenuated the nociceptive effect of local injections of BK in rats. These results provide a framework for understanding spontaneous inflammatory pain and may suggest new drug targets for treatment of such pain.
Jordt S. TRPV4 inhibition counteracts edema and inflammation and improves pulmonary function and oxygen saturation in chemically induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 307: L158 -L172, 2014. First published May 16, 2014; doi:10.1152/ajplung.00065.2014.-The treatment of acute lung injury caused by exposure to reactive chemicals remains challenging because of the lack of mechanism-based therapeutic approaches. Recent studies have shown that transient receptor potential vanilloid 4 (TRPV4), an ion channel expressed in pulmonary tissues, is a crucial mediator of pressure-induced damage associated with ventilator-induced lung injury, heart failure, and infarction. Here, we examined the effects of two novel TRPV4 inhibitors in mice exposed to hydrochloric acid, mimicking acid exposure and acid aspiration injury, and to chlorine gas, a severe chemical threat with frequent exposures in domestic and occupational environments and in transportation accidents. Postexposure treatment with a TRPV4 inhibitor suppressed acid-induced pulmonary inflammation by diminishing neutrophils, macrophages, and associated chemokines and cytokines, while improving tissue pathology. These effects were recapitulated in TRPV4-deficient mice. TRPV4 inhibitors had similar anti-inflammatory effects in chlorine-exposed mice and inhibited vascular leakage, airway hyperreactivity, and increase in elastance, while improving blood oxygen saturation. In both models of lung injury we detected increased concentrations of N-acylamides, a class of endogenous TRP channel agonists. Taken together, we demonstrate that TRPV4 inhibitors are potent and efficacious countermeasures against severe chemical exposures, acting against exaggerated inflammatory responses, and protecting tissue barriers and cardiovascular function. acute lung injury; chlorine; TRPV4 ACUTE LUNG INJURY (ALI) and its extreme manifestation, acute respiratory distress syndrome (ARDS), are associated with high levels of morbidity and mortality (28, 37). Major triggers of ALI and ARDS are pneumonia, sepsis, trauma, acid aspiration, inhalation of toxic gases or smoke, hyperoxia, high pressure ventilation, heart failure, or pancreatitis. A major hallmark of ALI and ARDS is the acute increase in permeability of the pulmonary vascular and epithelial barriers, resulting in edema and severe hypoxia (9). ALI and ARDS are often associated with exaggerated inflammatory responses due to neutrophil infiltration and increased macrophage activity in the injured lung (14,22). These inflammatory cells may aggravate injury through protease production, through generation of oxidative reactive species and proinflammatory cytokines and chemokines, and through prevention of inflammation resolution.The ion channel transient receptor potential vanilloid 4 (TRPV4) was recently identified as a major mediator of pulmonary dysfunction in animal models of ventilator-and heart failure-induced ALI, conditions associated with dramatic increases in pulmonary and vascular pressure (17,33). Among other ...
Allergic contact dermatitis is a common skin disease associated with inflammation and persistent pruritus. Transient receptor potential (TRP) ion channels in skin‐innervating sensory neurons mediate acute inflammatory and pruritic responses following exogenous stimulation and may contribute to allergic responses. Genetic ablation or pharmacological inhibition of TRPA1, but not TRPV1, inhibited skin edema, keratinocyte hyperplasia, nerve growth, leukocyte infiltration, and antihistamine‐resistant scratching behavior in mice exposed to the haptens, oxazolone and urushiol, the contact allergen of poison ivy. Hapten‐challenged skin of TRPA1‐deficient mice contained diminished levels of inflammatory cytokines, nerve growth factor, and endogenous pruritogens, such as substance P (SP) and serotonin. TRPA1‐deficient sensory neurons were defective in SP signaling, and SP‐induced scratching behavior was abolished in Trpa1–/– mice. SP receptor antagonists, such as aprepitant inhibited both hapten‐induced cutaneous inflammation and scratching behavior. These findings support a central role for TRPA1 and SP in the integration of immune and neuronal mechanisms leading to chronic inflammatory responses and pruritus associated with contact dermatitis.—Liu, B., Escalera, J., Balakrishna, S., Fan, L., Caceres, A. I., Robinson, E., Sui, A., McKay, M. C., McAlexander, M. A., Herrick, C. A., Jordt, S. E., TRPA1 controls inflammation and pruritogen responses in allergic contact dermatitis. FASEB J. 27, 3549–3563 (2013). http://www.fasebj.org
Poison ivy-induced allergic contact dermatitis (ACD) is the most common environmental allergic condition in the United States. Case numbers of poison ivy ACD are increasing due to growing biomass and geographical expansion of poison ivy and increasing content of the allergen, urushiol, likely attributable to rising atmospheric CO 2 . Severe and treatment-resistant itch is the major complaint of affected patients. However, because of limited clinical data and poorly characterized models, the pruritic mechanisms in poison ivy ACD remain unknown. Here, we aim to identify the mechanisms of itch in a mouse model of poison ivy ACD by transcriptomics, neuronal imaging, and behavioral analysis. Using transcriptome microarray analysis, we identified IL-33 as a key cytokine up-regulated in the inflamed skin of urushiol-challenged mice. We further found that the IL-33 receptor, ST2, is expressed in small to medium-sized dorsal root ganglion (DRG) neurons, including neurons that innervate the skin. IL-33 induces Ca 2+ influx into a subset of DRG neurons through neuronal ST2. Neutralizing antibodies against IL-33 or ST2 reduced scratching behavior and skin inflammation in urushiol-challenged mice. Injection of IL-33 into urushiol-challenged skin rapidly exacerbated itch-related scratching via ST2, in a histamine-independent manner. Targeted silencing of neuronal ST2 expression by intrathecal ST2 siRNA delivery significantly attenuated pruritic responses caused by urushiol-induced ACD. These results indicate that IL-33/ST2 signaling is functionally present in primary sensory neurons and contributes to pruritus in poison ivy ACD. Blocking IL-33/ST2 signaling may represent a therapeutic approach to ameliorate itch and skin inflammation related to poison ivy ACD.A llergic contact dermatitis (ACD) is a common allergic skin condition caused by environmental or occupational allergens (1). In the United States, the most common cause of ACD is contact with poison ivy, which affects >10 million Americans per year (2, 3). Poison ivy ACD is also a serious occupational hazard, particularly among firefighters, forestry workers, and farmers, accounting for 10% of total U.S. Forest Services losttime injuries, and it often torments outdoor enthusiasts as well (3, 4). The major allergen in poison ivy is urushiol, contained in the oleoresinous sap of the plant and of related plants (e.g., poison oak and poison sumac) (5). An estimated 50-75% of Americans are sensitized to urushiol (6). Elevated atmospheric carbon dioxide and warming temperatures have increased the biomass of poison ivy and related plants, widened their geographic distribution, and increased plant urushiol content (7). These factors will likely increase allergenicity and result in even larger case numbers of poison ivy ACD in the future (8).The clinical manifestations of poison ivy-induced ACD are intense and persistent itch (pruritus), burning sensation, skin rashes, and swelling, followed by the appearance of vesicles in severe cases (2, 3, 9). Skin inflammation and pruritus ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.