This article analyzes some aeromagnetic filtering techniques for mitigating deceptive geophysical conceptions that may result in a distorted range of geological information from aeromagnetic data. The implication of using the aeromagnetic method, data processing, and enhancement to distinguish sediment-produced anomalies was considered. Two methods to locate buried faults in aeromagnetic data were compared: Edge and fault detection were considered using the magnetic contrast and horizontal gradient methods, whereas rapid depth estimation was considered using the Euler deconvolution method and Signum method. The general challenge to find the magnetic anomaly depth and delineate edges relies on geophysical filtering techniques discussed in order to maintain its geological relevance. The magnetic-contrast layer model signatures help clarify the existence of intra-sedimentary faults. The horizontal gradient approach relative to other derivative methods has better noise stability and fast adaptation to grids without modifying parameters. However, the Signum transform (ST) approach offers a more special solution in depth estimation than the Euler’s deconvolution approach whose solution relies on the required choice of default shape parameters and windows. The Euler deconvolution procedure may not be able to detect structures found by the ST approach and vice versa. As a result, these techniques may be used in conjunction with one another during analysis, as complementary interpretation tools. This review will however aid in the analysis of information used as a criterion for determining faults using various analytical techniques like ST or Euler deconvolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.