Abstract. This paper presents a bottom-up methodology based on the local emission factors, complemented with the widely used emission factors of Computer Programme to Calculate Emissions from Road Transport (COPERT) model and near-real-time traffic data on road segments to develop a vehicle emission inventory with high temporal-spatial resolution (HTSVE) for the Beijing urban area. To simulate real-world vehicle emissions accurately, the road has been divided into segments according to the driving cycle (traffic speed) on this road segment. The results show that the vehicle emissions of NO x , CO, HC and PM were 10.54 × 10 4 , 42.51 × 10 4 and 2.13 × 10 4 and 0.41 × 10 4 Mg respectively. The vehicle emissions and fuel consumption estimated by the model were compared with the China Vehicle Emission Control Annual Report and fuel sales thereafter. The gridbased emissions were also compared with the vehicular emission inventory developed by the macro-scale approach. This method indicates that the bottom-up approach better estimates the levels and spatial distribution of vehicle emissions than the macro-scale method, which relies on more information. Based on the results of this study, improved air quality simulation and the contribution of vehicle emissions to ambient pollutant concentration in Beijing have been investigated in a companion paper (He et al., 2016).
Abstract. As the ownership of vehicles and frequency of utilization increase, vehicle emissions have become an important source of air pollution in Chinese cities. An accurate emission inventory for on-road vehicles is necessary for numerical air quality simulation and the assessment of implementation strategies. This paper presents a bottom-up methodology based on the local emission factors, complemented with the widely used emission factors of Computer Programme to Calculate Emissions from Road Transport (COPERT) model and near real time (NRT) traffic data on road segments to develop a high temporal-spatial resolution vehicle emission inventory (HTSVE) for the urban Beijing area. To simulate real-world vehicle emissions accurately, the road has been divided into segments according to the driving cycle (traffic speed) on this road segment. The results show that the vehicle emissions of NOx, CO, HC and PM were 10.54 × 104, 42.51 × 104 and 2.13 × 104 and 0.41 × 104 Mg, respectively. The vehicle emissions and fuel consumption estimated by the model were compared with the China Vehicle Emission Control Annual Report and fuel sales thereafter. The grid-based emissions were also compared with the vehicular emission inventory developed by the macro-scale approach. This method indicates that the bottom-up approach better estimates the levels and spatial distribution of vehicle emissions than the macro-scale method, which relies on more information. Additionally, the on-road vehicle emission inventory model and control effect assessment system in Beijing, a vehicle emission inventory model, was established based on this study in a companion paper (He et al., 2015).
Abstract. A companion paper developed a vehicle emission inventory with high temporal–spatial resolution (HTSVE) with a bottom-up methodology based on local emission factors, complemented with the widely used emission factors of COPERT model and near-real-time (NRT) traffic data on a specific road segment for 2013 in urban Beijing (Jing et al., 2016), which is used to investigate the impact of vehicle pollution on air pollution in this study. Based on the sensitivity analysis method of switching on/off pollutant emissions in the Chinese air quality forecasting model CUACE, a modelling study was carried out to evaluate the contributions of vehicle emission to the air pollution in Beijing's main urban areas in the periods of summer (July) and winter (December) 2013. Generally, the CUACE model had good performance of the concentration simulation of pollutants. The model simulation has been improved by using HTSVE. The vehicle emission contribution (VEC) to ambient pollutant concentrations not only changes with seasons but also changes with time. The mean VEC, affected by regional pollutant transports significantly, is 55.4 and 48.5 % for NO2 and 5.4 and 10.5 % for PM2.5 in July and December 2013 respectively. Regardless of regional transports, relative vehicle emission contribution (RVEC) to NO2 is 59.2 and 57.8 % in July and December 2013, while it is 8.7 and 13.9 % for PM2.5. The RVEC to PM2.5 is lower than the PM2.5 contribution rate for vehicle emission in total emission, which may be due to dry deposition of PM2.5 from vehicle emission in the near-surface layer occuring more easily than from elevated source emission.
The frequent occurrence of regional air pollution makes it challenging to control. Based on source sensitivity research performed with the Chinese Unified Atmospheric Chemistry Environment (CUACE) model and dispersion simulation performed with the Flexible Particle dispersion model (FLEXPART), the regional transport of particulate matter (PM), potential source regions, and transport pathways were investigated for Beijing in summer (July) and winter (December) 2013. The mean near-surface trans-boundary contribution ratio (TBCR) of PM 2.5 in Beijing was 53.4% and 36.1% in summer and winter 2013, respectively, and 51.8% and 35.1% for PM 10 . Regional transport in summer was more significant than that in winter. Seasonal difference of meteorological condition combined with the distribution of emission is responsible for seasonal difference of TBCR. The secondary aerosol is mostly contributed by regional transport. The transport of PM is mostly from Hebei province and Tianjin municipality. Based on backward trajectories analysis, the air mass source occurred from different directions in summer, while occurred from northwest in winter. The pollution level and the TBCR were closely related to the transport pathways and distance, especially in summer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.