Heterogeneous multicore and multiprocessor systems have been widely used for wireless sensor information processing, but system energy consumption has become an increasingly important issue. To ensure the reliable and safe operation of sensor systems, the task scheduling success rate of heterogeneous platforms should be improved, and energy consumption should be reduced. This work establishes a trusted task scheduling model for wireless sensor networks, proposes an energy consumption model, and adopts the ant colony algorithm and bee colony algorithm for the task scheduling of a real-time sensor node. Experimental result shows that the genetic algorithm and ant colony algorithm can efficiently solve the energy consumption problem in the trusted task scheduling of a wireless sensor and that the performance of the bee colony algorithm is slightly inferior to that of the first two methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.