Cancer progression involves the gradual loss of a differentiated phenotype and acquisition of progenitor and stem-cell-like features. Here, we provide novel stemness indices for assessing the degree of oncogenic dedifferentiation. We used an innovative one-class logistic regression (OCLR) machine-learning algorithm to extract transcriptomic and epigenetic feature sets derived from non-transformed pluripotent stem cells and their differentiated progeny. Using OCLR, we were able to identify previously undiscovered biological mechanisms associated with the dedifferentiated oncogenic state. Analyses of the tumor microenvironment revealed unanticipated correlation of cancer stemness with immune checkpoint expression and infiltrating immune cells. We found that the dedifferentiated oncogenic phenotype was generally most prominent in metastatic tumors. Application of our stemness indices to single-cell data revealed patterns of intra-tumor molecular heterogeneity. Finally, the indices allowed for the identification of novel targets and possible targeted therapies aimed at tumor differentiation.
High-grade gliomas are rapidly progressing tumors of the central nervous system (CNS) with a very poor prognosis despite extensive resection combined with radiation and/or chemotherapy. Histopathological and flow cytometry analyses of human and rodent experimental gliomas revealed heterogeneity of a tumor and its niche, composed of reactive astrocytes, endothelial cells, and numerous immune cells. Infiltrating immune cells consist of CNS resident (microglia) and peripheral macrophages, granulocytes, myeloid-derived suppressor cells (MDSCs), and T lymphocytes. Intratumoral density of glioma-associated microglia/macrophages (GAMs) and MDSCs is the highest in malignant gliomas and inversely correlates with patient survival. Although GAMs have a few innate immune functions intact, their ability to be stimulated via TLRs, secrete cytokines, and upregulate co-stimulatory molecules is not sufficient to initiate antitumor immune responses. Moreover, tumor-reprogrammed GAMs release immunosuppressive cytokines and chemokines shaping antitumor responses. Both GAMs and MDSCs have ability to attract T regulatory lymphocytes to the tumor, but MDSCs inhibit cytotoxic responses mediated by natural killer cells, and block the activation of tumor-reactive CD4 T helper cells and cytotoxic CD8 T cells. The presence of regulatory T cells may further contribute to the lack of effective immune activation against malignant gliomas. We review the immunological aspects of glioma microenvironment, in particular composition and various roles of the immune cells infiltrating malignant human gliomas and experimental rodent gliomas. We describe tumor-derived signals and mechanisms driving myeloid cell accumulation and reprogramming. Although, understanding the complexity of cell-cell interactions in glioma microenvironment is far from being achieved, recent studies demonstrated several glioma-derived factors that trigger migration, accumulation, and reprogramming of immune cells. Identification of these factors may facilitate development of immunotherapy for gliomas as immunomodulatory and immune evasion mechanisms employed by malignant gliomas pose an appalling challenge to brain tumor immunotherapy.
for highly malignant gliomas (World Health Organization grade III and IV) there is no successful treatment; patients have an average survival time of approximately 1 y after diagnosis. Glioma cells are highly invasive and infiltrate normal brain tissue, and as a result, surgical resection is always incomplete. Degradation of ECM by membrane-bound and secreted metalloproteases facilitates glioma invasion. In particular, the membrane-bound metalloproteases are pivotal for tumor invasion as they very efficiently digest extracellular matrix proteins and also activate secreted metalloproteases (1) like matrix metalloproteinase-2 (MMP-2, also known as gelatinase A), which is one of the major proteases involved in glioma invasion in mouse models (2) and probably also in humans (3). Hence, membrane-inserted metalloproteases like membrane type 1 matrix metalloproteinase (MT1-MMP) can enable gliomas to invade the brain parenchyma as single cells (4).Microglia are the intrinsic immune cells of the brain; they control the innate and the adaptive immune response in the CNS and are activated by inflammatory or other pathological stimuli (5). Activation of microglial toll-like receptors (TLRs) triggers the innate immune response and can initiate host-defense and tissue repair mechanisms, but also CNS inflammation, neurodegeneration, and trauma (5, 6). As microglial cells are attracted toward glioma in large numbers-glioma tissue consists of as much as 30% microglial cells-and because microglia density in gliomas positively correlates with malignancy, invasiveness, and grading of the tumors (7-9), we investigated if microglia may actively contribute to glioma expansion. Here, we show that soluble factors released from glioma stimulate microglial TLRs, resulting in microglial MT1-MMP expression via the TLR downstream signaling molecules MyD88 and p38 MAPK. In turn, MT1-MMP expression and activity in these immune cells promotes glioma cell invasion and tumor expansion. ResultsGlioma Associated Microglia Over-Express MT1-MMP. We analyzed the expression pattern of the matrix protease MT1-MMP in mouse and human gliomas and found the enzyme to be expressed predominantly in microglial cells closely associated with the tumors. Whereas tumor-free human brain samples showed virtually no MT1-MMP expression, we detected intense MT1-MMP labeling, especially in higher-grade gliomas. Importantly, in human samples, immunolabeling for the microglial marker Iba1 and for MT1-MMP largely overlapped [supporting information (SI) Fig. S1 A-D and Table S1]. Likewise, after injection of a human glioma cell line (U373 cells) into immunodeficient mice, we detected that microglia represent the predominant cell type contributing intratumoral MT1-MMP expression (see Fig. S1E).In our in vivo mouse model, the glioma cells were identified by stable expression of EGFP and microglial cells by immunolabeling for Iba1. In sections obtained from mice 2 weeks after intracerebral injection with isogenic glioma cells (GL261 cells), we found an increased density of mic...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.