A large scale analysis presented in this article focuses on biological and physiological variety of bacteriophages. A collection of 83 bacteriophages, isolated from urban sewage and able to propagate in cells of different bacterial hosts, has been obtained (60 infecting Escherichia coli, 10 infecting Pseudomonas aeruginosa, 4 infecting Salmonella enterica, 3 infecting Staphylococcus sciuri, and 6 infecting Enterococcus faecalis). High biological diversity of the collection is indicated by its characteristics, both morphological (electron microscopic analyses) and biological (host range, plaque size and morphology, growth at various temperatures, thermal inactivation, sensitivity to low and high pH, sensitivity to osmotic stress, survivability upon treatment with organic solvents and detergents), and further supported by hierarchical cluster analysis. By the end of the research no larger collection of phages from a single environmental source investigated by these means had been found. The finding was confirmed by whole genome analysis of 7 selected bacteriophages. Moreover, particular bacteriophages revealed unusual biological features, like the ability to form plaques at low temperature (4 °C), resist high temperature (62 °C or 95 °C) or survive in the presence of an organic solvents (ethanol, acetone, DMSO, chloroform) or detergent (SDS, CTAB, sarkosyl) making them potentially interesting in the context of biotechnological applications.
A microRNA-size (20-nt long) molecule has been identified in Escherichia coli after induction of Shiga toxin-converting bacteriophage Φ24B. This small RNA, named 24B_1, is encoded in the lom-vb_24B_43 region of the phage genome, and apparently it is produced by cleavage of a larger transcript. A phage devoid of 24B_1 revealed decreased efficiency of lysogenization, quicker prophage induction after provoking the SOS response, higher efficiency of progeny phage production during the lytic cycle and less efficient adsorption on the host cells. Expression of most of phage genes was drastically increased after infection of E. coli by the Φ24BΔ24B_1 phage. Since 24B_1 may impair expression of the d_ant gene, coding for an anti-repressor, these results may explain the mechanism of regulations of the physiological processes by this small RNA due to impaired activity of the cI repressor and changed expression of vast majority of phage genes. To our knowledge, this is the first example of functional microRNA-size molecule in bacterial cells.
Lambdoid bacteriophages serve as useful models in microbiological and molecular studies on basic biological process. Moreover, this family of viruses plays an important role in pathogenesis of enterohemorrhagic Escherichia coli (EHEC) strains, as they are carriers of genes coding for Shiga toxins. Efficient expression of these genes requires lambdoid prophage induction and multiplication of the phage genome. Therefore, understanding the mechanisms regulating these processes appears essential for both basic knowledge and potential anti-EHEC applications. The exo-xis region, present in genomes of lambdoid bacteriophages, contains highly conserved genes of largely unknown functions. Recent report indicated that the Ea8.5 protein, encoded in this region, contains a newly discovered fused homeodomain/zinc-finger fold, suggesting its plausible regulatory role. Moreover, subsequent studies demonstrated that overexpression of the exo-xis region from a multicopy plasmid resulted in impaired lysogenization of E. coli and more effective induction of λ and Ф24B prophages. In this report, we demonstrate that after prophage induction, the increase in phage DNA content in the host cells is more efficient in E. coli bearing additional copies of the exo-xis region, while survival rate of such bacteria is lower, which corroborated previous observations. Importantly, by using quantitative real-time reverse transcription PCR, we have determined patterns of expressions of particular genes from this region. Unexpectedly, in both phages λ and Ф24B, these patterns were significantly different not only between conditions of the host cells infection by bacteriophages and prophage induction, but also between induction of prophages with various agents (mitomycin C and hydrogen peroxide). This may shed a new light on our understanding of regulation of lambdoid phage development, depending on the mode of lytic cycle initiation.
The characterization of a recently isolated bacteriophage, vB_Eco4M-7, which effectively infects many, though not all, Escherichia coli O157 strains, is presented. The genome of this phage comprises doublestranded DNA, 68,084 bp in length, with a GC content of 46.2%. It contains 96 putative open reading frames (ORFs). Among them, the putative functions of only 35 ORFs were predicted (36.5%), whereas 61 ORFs (63.5%) were classified as hypothetical proteins. The genome of phage vB_Eco4M-7 does not contain genes coding for integrase, recombinase, repressors or excisionase, which are the main markers of temperate viruses. Therefore, we conclude that phage vB_Eco4M-7 should be considered a lytic virus. This was confirmed by monitoring phage lytic development by a one-step growth experiment. Moreover, the phage forms relatively small uniform plaques (1 mm diameter) with no properties of lysogenization. Electron microscopic analyses indicated that vB_Eco4M-7 belongs to the Myoviridae family. Based on mass spectrometric analyses, including the fragmentation pattern of unique peptides, 33 phage vB_Eco4M-7 proteins were assigned to annotated open reading frames. Importantly, genome analysis suggested that this E. coli phage is free of toxins and other virulence factors. In addition, a similar, previously reported but uncharacterized bacteriophage, ECML-117, was also investigated, and this phage exhibited properties similar to vB_Eco4M-7. Our results indicate that both studied phages are potential candidates for phage therapy and/or food protection against Shiga toxin-producing E. coli, as the majority of these strains belong to the O157 serotype.
Morphological, biological, and genetic characteristics of a virulent Siphoviridae phage, named vB-EcoS-95, is reported. This phage was isolated from urban sewage. It was found to infect some Escherichia coli strains giving clear plaques. The genome of this phage is composed of 50,910 bp and contains 89 ORFs. Importantly, none of the predicted ORFs shows any similarity with known pathogenic factors that would prevent its use in medicine. Genome sequence analysis of vB-EcoS-95 revealed 74% similarity to genomic sequence of Shigella phage pSf-1. Compared to pSf-1, phage vb-EcoS-95 does not infect Shigella strains and has an efficient bacteriolytic activity against some E. coli strains. One-step growth analysis revealed that this phage has a very short latent period (4 min), and average burst size of 115 plaque forming units per cell, which points to its high infectivity of host cells and strong lytic activity. The bacteriolytic effect of vB-EcoS-95 was tested also on biofilm-producing strains. These results indicate that vB-EcoS-95 is a newly discovered E. coli phage that may be potentially used to control the formation of biofilms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.