The seeds of Lamb's Quarters (Chenopodium album agg.) were stimulated by lowpressure discharge. The tested seeds were exposed to plasma discharge for different time durations (from 6 minutes to 48 minutes). Germination tests were performed under specified laboratory conditions during seven days in five identical and completely independent experiments. Significant differences between the control and plasma-treated seeds were observed. The treated seeds showed structural changes on the surface of the seat coat. They germinated faster and their sprout accretion on the first day of seed germination was longer. Germination rate for the untreated seeds was 15% while it increased approximately three times (max 55%) for seeds treated by plasma from 12 minutes to 48 minutes.
Clonal growth confers a number of benefits on plants, but involves some costs as well. We examined whether seed reproduction is reduced in clonal plants due to these costs. Further, we investigated whether this relationship differs for species with optima at stressful or low‐productivity sites, as a possible indication that clonality acts as insurance against reduced seed reproduction in such conditions. We evaluated 472 species for which seed production per unit area had been determined, and employed this information together with data on seed mass, height at maturity, clonal traits and optimum habitat conditions (using Ellenberg indicator values). There was a strong hyperbolic relationship between seed output and seed mass, with a scaling coefficient of −1, indicative of a simple tradeoff relationship. We performed analyses both with and without taking phylogeny into account.
Reproductive output (i.e. the product of seed output and seed size) of was lower in clonal than in non‐clonal plants (in both with and without phylogeny incorporated in the analyses); within non‐clonal species, it was high in annuals and monocarpic plants relative to nonclonal perennials. Reproductive output was lower in clonal plants with extensive lateral spread. This may be due to lower mortality of such plants, which should favor reduced reproductive output, but direct resource tradeoff may also be involved. Reproductive output in all clonal and non‐clonal plants increased with the nutrient status and light level of the species’ optimum, and decreased with moisture. Because the proportion of clonal plants in vegetation is known to decrease along the same gradients, we can infer that as sexual reproduction becomes increasingly difficult in terms of these characteristics, clonal plants may capitalize on their capacity to bypass it. However, the relationships with habitat parameters disappeared in the phylogenetically corrected analysis, indicating that habitat preferences and reproductive output evolved together.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.