In order to investigate the effects of antioxidant supplementation on chromosome damage, a 3 month antioxidant supplementation trial was conducted on groups of 28 myocardial infarction survivors and 57 rural controls, all male. The supplement consisted of vitamin C (100 mg/day), vitamin E (100 mg/day), beta-carotene (6 mg/day) and selenium (50 microg/day). Dietary antioxidants in plasma were measured, as well as the ferric reducing ability of plasma (a measure of total plasma antioxidant status) and the concentration of malondialdehyde as an indicator of oxidative stress. Lymphocytes collected at the beginning and end of the supplementation period were stimulated to proliferate and metaphases accumulated for scoring of chromosome aberrations: per cent aberrant cells and chromatid and chromosome breaks. Supplementation with antioxidants was associated with a decrease in the percentage of cells with chromosome aberrations in the group of rural controls (0.63% before compared with 0.27% after supplementation; P = 0.03). The largest effect of supplementation was seen in smokers in this group (0.12% aberrant cells in supplemented compared with 0.81% in placebo group; P > 0.001). The results support the hypothesis that antioxidants decrease genetic damage.
We have investigated the effect of modest supplementation with alpha-tocopherol (100 mg/day), beta-carotene (6 mg/day), vitamin C (100 mg/day) and selenium (50 microg/day) on oxidative stress and chromosomal damage, and the influence of methylenetetrahydrofolate reductase (MTHFR) genotype on these end-points. Subjects were two groups of middle-aged men differing in cardiovascular risk; 46 survivors of myocardial infarction before age 50 and 60 healthy controls. They were randomly divided into equal groups to receive antioxidants or placebo for 12 weeks. Twenty-eight patients and 58 controls completed the intervention. Micronucleus levels in peripheral lymphocytes and changes seen after intervention were studied in relation to the MTHFR C677T genotype, basal homocysteine and plasma folate levels. Ferric reducing ability of plasma and concentration of malondialdehyde were measured to assess the antioxidant effect of supplementation. There was no association of micronuclei with folate, homocysteine or malondialdehyde levels before supplementation. Micronucleus frequencies and plasma folate levels did not vary significantly with MTHFR genotype. Homocysteine levels in subjects with the TT variant genotype were significantly higher compared with CT or CC (P = 0.001), especially in subjects with low folate (P = 0.012). In the placebo control group an increase in micronuclei (P = 0.04) was detected at the end of the intervention period. This effect was not seen in the supplemented group. In antioxidant-supplemented myocardial infarction survivors we found an increase in the ferric reducing ability of plasma (P < 0.001) and a decrease in malondialdehyde (P = 0.001). Micronucleus frequency showed a decrease, strongest in subjects with normal folate levels (P = 0.015). In subjects with low folate levels, a high correlation was found between micronuclei after supplementation and homocysteine, both before (r = 0.979, P = 0.002) and after supplementation (r = 0.922, P = 0.009). Thus, folate deficiency may amplify the effect of other risk factors such as elevated homocysteine levels or variant MTHFR genotype, as well as influencing the ability of antioxidant supplementation to protect against genetic damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.