Green roofs have potential for providing substantial habitat to plants, birds, and arthropod species that are not well supported by other urban habitats. Whereas the plants on a typical green roof are chosen and planted by people, the arthropods that colonize it can serve as an indicator of the ability of this novel habitat to support a diverse community of organisms. The goal of this observational study was to determine which physical characteristics of a roof or characteristics of its vegetation correlate with arthropod diversity on the roof. We intensively sampled the number of insect families on one roof with pitfall traps and also measured the soil arthropod species richness on six green roofs in the Boston, MA area. We found that the number of arthropod species in soil, and arthropod families in pitfall traps, was positively correlated with living vegetation cover. The number of arthropod species was not significantly correlated with plant diversity, green roof size, distance from the ground, or distance to the nearest vegetated habitat from the roof. Our results suggest that vegetation cover may be more important than vegetation diversity for roof arthropod diversity, at least for the first few years after establishment. Additionally, we found that even green roofs that are small and isolated can support a community of arthropods that include important functional groups of the soil food web.
The integration of photovoltaic (PV) panels and green roofs has the potential to improve panel efficiency to produce electricity and enhance green roof species diversity and productivity. In this review, we provide an overview of research on the effects of green roofs on PV panel electricity production, and predict the expected effects of the PV panel on green roof plant communities. Previous studies suggest that PV panels are more efficient above a green roof than above several types of conventional roofs due to the cooling effect of green roofs on the temperature-sensitive PV cells. Some ecological studies on shade suggest that shade imposed by panels may enhance the biotic productivity of green roofs. Shade is often shown to be important for seedling survival, particularly in arid environments – so the effect of shade on plants may depend on climate and irrigation. Previous studies also suggest that shade variations over the roof area may enhance plant diversity, as such heterogeneity creates niches of light and moisture levels that are appropriate for a diversity of plants. These positive effects on plant diversity may lead to increased arthropod diversity as well. Additional replicated studies are needed to test the reciprocal effects of green roofs and PV, as past studies lacked replication. Future directions for research that could guide the design of green roof–PV integration include the effects of irrigation, plant diversity, and green area-to-panel ratio on the roof.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.