Summary Chronic dietary restriction (DR) is considered among the most robust life-extending interventions, but several reports indicate that DR does not always extend and may even shorten lifespan in some genotypes. An unbiased genetic screen of the lifespan response to DR has been lacking. Here we measured the effect of one commonly used level of dietary restriction (DR: 40% reduction in food intake) on mean lifespan of virgin males and females in 41 recombinant inbred (RI) strains of mice. Mean strain-specific lifespan varied 2- to 3-fold under ad libitum (AL) feeding and 6- to 10-fold under DR, in males and females, respectively. Notably, DR shortened lifespan in more strains than those in which it lengthened life. Food intake and female fertility varied markedly among strains under AL feeding, but neither predicted DR survival: therefore, strains in which DR shortened lifespan did not have low food intake or poor reproductive potential. Finally, strain-specific lifespans under DR and AL feeding were not correlated, indicating that the genetic determinants of lifespan under these two conditions differ. These results demonstrate that the lifespan response to a single level of DR exhibits wide variation amenable to genetic analysis. They also show that DR can shorten lifespan in inbred mice. Although strains with shortened lifespan under 40% DR may not respond negatively under less stringent DR, the results raise the possibility that life extension by DR may not be universal.
Dietary restriction (DR) has been used for decades to retard aging in rodents, but its mechanism of action remains an enigma. A principal roadblock has been that DR affects many different processes, making it difficult to distinguish cause and effect. To address this problem, we applied a quantitative genetics approach utilizing the ILSXISS series of mouse recombinant inbred strains. Across 42 strains, mean female lifespan ranged from 380 to 1070 days on DR (fed 60% of ad libitum [AL]) and from 490 to 1020 days on an AL diet. Longevity under DR and AL is under genetic control, showing 34% and 36% heritability, respectively. There was no correlation between lifespans on DR and AL; thus different genes modulate longevity under the two regimens. DR lifespans are significantly correlated with female fertility after return to an AL diet after various periods of DR (R = 0.44, P = 0.006). We assessed fuel efficiency (FE, ability to maintain growth and body weight independent of absolute food intake) using a multivariate approach and found it to be correlated with longevity and female fertility, suggesting possible causality. We found several quantitative trait loci responsible for these traits, mapping to chromosomes 7, 9, and 15. We present a metabolic model in which the anti-aging effects of DR are consistent with the ability to efficiently utilize dietary resources.
The set of LXS recombinant inbred (RI) strains is a new and exceptionally large mapping panel that is suitable for the analysis of complex traits with comparatively high power. This panel consists of 77 strains-more than twice the size of other RI sets--and will typically provide sufficient statistical power (beta = 0.8) to map quantitative trait loci (QTLs) that account for approximately 25% of genetic variance with a genomewide p < 0.05. To characterize the genetic architecture of this new set of RI strains, we genotyped 330 MIT microsatellite markers distributed on all autosomes and the X Chromosome and assembled error-checked meiotic recombination maps that have an average F2-adjusted marker spacing of approximately 4 cM. The LXS panel has a genetic structure consistent with random segregation and subsequent fixation of alleles, the expected 3-4 x map expansion, a low level of nonsyntenic association among loci, and complete independence among all 77 strains. Although the parental inbred strains-Inbred Long-Sleep (ILS) and Inbred Short-Sleep (ISS)--were derived originally by selection from an 8-way heterogeneous stock selected for differential sensitivity to sedative effects of ethanol, the LXS panel is also segregating for many other traits. Thus, the LXS panel provides a powerful new resource for mapping complex traits across many systems and disciplines and should prove to be of great utility in modeling the genetics of complex diseases in human populations.
Summary Dietary restriction (DR), one of the most robust life-extending manipulations, is usually associated with reduced adiposity. This reduction is hypothesized to be important in the life-extending effect of DR, because excess adiposity is associated with metabolic and age-related disease. Previously, we described remarkable variation in the lifespan response of 41 recombinant inbred strains of mice to DR, ranging from life extension to life shortening. Here, we used this variation to determine the relationship of lifespan modulation under DR to fat loss. Across strains, DR life extension correlated inversely with fat reduction, measured at midlife (males, r = −0.41, P < 0.05, n = 38 strains; females, r = −0.63, P < 0.001, n = 33 strains) and later ages. Thus, strains with the least reduction in fat were more likely to show life extension, and those with the greatest reduction were more likely to have shortened lifespan. We identified two significant quantitative trait loci (QTLs) affecting fat mass under DR in males but none for lifespan—precluding the confirmation of these loci as coordinate modulators of adiposity and longevity. Our data also provide evidence for two QTLs previously shown to affect fuel efficiency under DR. In summary, the data do not support an important role for fat reduction in life extension by DR. They suggest instead that factors associated with maintaining adiposity are important for survival and life extension under DR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.