Aim: To determine in vivo whether the lateral geniculate nucleus (LGN) undergoes atrophy in patients with glaucoma and vision loss compared with normal subjects. Methods: Following institutional St Michael's Hospital Research Ethics Board approval, a prospective and masked neuroimaging study was conducted on glaucoma patients with visual-field defects affecting both eyes (n = 10) and age-matched controls (n = 8). Following informed consent, all subjects underwent 1.5-Tesla MRI. Coronal proton density magnetic resonance images of both LGNs were obtained, and LGN height measurements were measured by consensus by three neuroradiologists masked to the diagnosis. Glaucoma and control groups were compared using the t test. Results: Both LGNs were identified and visualised by 1.5-Tesla MRI for every subject. Compared with controls, the mean LGN heights in glaucoma were decreased in right LGN atrophy may be a relevant biomarker of visual system injury and/or progression in some glaucoma patients.
The cognitive impairments associated with schizophrenia have long been known to involve deficits in working memory (WM) capacity. To date, however, the causes of WM capacity deficits remain unknown. The present study examined selective attention impairments as a putative contributor to observed capacity deficits in this population. To test this hypothesis, we used an experimental paradigm that assesses the role of selective attention in WM encoding and has been shown to involve the prefrontal cortex and the basal ganglia. In experiment 1, participants were required to remember the locations of 3 or 5 target items (red circles). In another condition, 3-target items were accompanied by 2 distractor items (yellow circles), which participants were instructed to ignore. People with schizophrenia (PSZ) exhibited significant impairment in memory for the locations of target items, consistent with reduced WM capacity, but PSZ and healthy control subjects did not differ in their ability to filter the distractors. This pattern was replicated in experiment 2 for distractors that were more salient. Taken together, these results demonstrate that reduced WM capacity in PSZ is not attributable to a failure of filtering irrelevant distractors.
Introduction To establish the preclinical safety and equivalency of ophthalmic viscosurgical devices (OVDs) comprised of bacterially sourced sodium hyaluronate (HA) to animal sourced HA using pyrogenicity and aqueous exchange models in rabbits and a novel mini-pig model to evaluate corneal endothelial cell protection in vivo. Methods HEALON OVD and HEALON5 OVD containing animal-derived HA and HEALON PRO OVD and HEALON5 PRO OVD containing bacterial-derived HA were used. Two rabbit aqueous exchange studies were conducted where aqueous humor was exchanged with OVDs in six animals each to observe potential ocular inflammation, intraocular pressure (IOP) response, corneal health and pachymetry until 7 days post procedure, as well as overall assessment of the OVDs. Endothelial cell protection was evaluated in a Yucatan mini-pig cataract surgery model where HEALON PRO and HEALON5 PRO OVDs were compared to HEALON and HEALON5 OVDs, respectively. Following cataract surgery with use of OVDs in six animals per study, animals were evaluated for ocular and general health, IOP, corneal thickness, ocular inflammation, and endothelial cell protection on days 1, 3, 7 and 14 post-surgery. Results All rabbit studies demonstrated equivalence between bacterial-derived and animal-derived OVDs. Mild, post-surgical irritation, IOP increase, and corneal thickness measurements were not significantly different in HEALON PRO OVD and HEALON5 PRO OVD compared to HEALON and HEALON5 OVDs, respectively. The mini-pig model developed to investigate endothelial cell protection was successful in demonstrating equivalence between the OVDs studied. Changes in IOP mirrored actual surgical procedures, while corneal pachymetry and endothelial cell density remained constant for all OVDs used. Slit lamp observations showed expected inflammation following surgical procedures, likely due to challenges encountered during surgical procedures. Conclusion Rabbit pyrogenicity and aqueous exchanged paired with a novel simulated cataract surgery mini-pig model demonstrate equivalence of OVDs regardless of HA source. Albeit with challenges, the mini-pig model was shown to be a promising tool for endothelial cell evaluation during the development of new OVDs for ophthalmic use. Funding Johnson & Johnson Surgical Vision, Inc.
A single-mode frequency stable helium neon laser operating on the 543 nm neon transition was used to probe an electrical discharge in helium neon mixtures. Values for the optical gain at this wavelength were obtained. A comparison with the widely documented behaviour of the 633 nm transition, which shares the same upper state as the 543 nm transition, shows a marked difference in the variation of the optical gain with discharge pressure. This is shown to occur due to the differing behaviour of the lower laser state population densities with pressure. It is proposed that this could be due to the resonance peak in the electron excitation cross section from the ground state to the 2 level. Variation of gain with discharge current is also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.