CD14 and the toll-like receptor 4 have been known to play an important role in lipopolysaccharide-induced cellular responses in bacterial infections. Although CD14 and toll-like receptor 4 expression has been demonstrated in a number of myeloid cells, much less is known about the expression and function of these lipopolysaccharide receptors on nonleukocytes. In this study, we demonstrate that human keratinocytes are capable of expressing functional CD14 and toll-like receptor 4. Keratinocytes were found to constitutively express CD14 and toll-like receptor 4 mRNA that was augmented by exposure to lipopolysaccharide. Cell surface expression of keratinocyte CD14 and toll-like receptor 4 was detected by flow cytometry. Lipopolysaccharide binding to keratinocyte CD14 and toll-like receptor 4 resulted in a rapid intracellular Ca2+ response, nuclear factor-kappaB nuclear translocation, and the secretion of proinflammatory cytokines and chemokines. These results have important implications for our understanding of cutaneous innate immunity to bacterial infections of the skin.
Retroviral nucleocapsid and gag-precursor proteins from all known strains of retroviruses contain one or two copies of an invariant sequence, Cys-X2-Cys-X4-His-X4-Cys, that is populated with zinc in mature particles. Modification of cysteine or histidine residues results in defective packaging of genomic viral RNA and formation of non-infectious particles, making these structures potentially attractive targets for antiviral therapy. We recently reported that aromatic C-nitroso ligands of poly(ADP-ribose) polymerase preferentially destabilize one of the two (Cys-X2-Cys-X28-His-X2-Cys) zinc-fingers with concomitant loss of enzymatic activity, coincidental with selective cytocidal action of the C-nitroso substituted ligands on cancer cells. Based on the occurrence of (3Cys, 1His) zinc-binding sites in both retroviral nucleocapsid and gag proteins and in poly(ADP-ribose) polymerase, we reasoned that the C-nitroso compounds may also have antiretroviral effects. We show here that two such compounds, 3-nitrosobenzamide and 6-nitroso-1,2-benzopyrone, inhibit infection of human immunodeficiency virus HIV-1 in human lymphocytes and also eject zinc from isoalted HIV-1 nucleocapsid zinc fingers and from intact HIV-1 virions. Thus the design of zinc-ejecting agents that target retroviral zinc fingers represents a new approach to the chemotherapy of AIDS.
There is increasing evidence that sensory nerves may participate in cutaneous inflammatory responses by the release of neuropeptides such as substance P (SP). We examined the direct effect of SP on human dermal microvascular endothelial cell (HDMEC) intercellular adhesion molecule 1 (ICAM-1) expression and function. Our results indicated that, although cultured HDMEC expressed mRNA for neurokinin receptors 1, 2, and 3 (NK-1R, NK-2R, and NK-3R), SP initiated a rapid increase in HDMEC intracellular Ca2+ levels, primarily by the activation of NK-1R. Immunohistochemistry studies likewise demonstrated that HDMEC predominantly expressed NK-1R. The addition of SP to HDMEC resulted in a rapid increase in cellular ICAM-1 mRNA levels, followed by a fivefold increase in ICAM-1 cell surface expression. This functionally resulted in a threefold increase in51Cr-labeled binding of J-Y lymphoblastoid cells to HDMEC. In vivo studies demonstrated a marked increase in microvascular ICAM-1 immunostaining 24 and 48 h after application of capsaicin to the skin. These results indicate that neuropeptides such as SP are capable of directly activating HDMEC to express increased levels of functional ICAM-1 and further support the role of the cutaneous neurological system in modulating inflammatory processes in the skin.
The results show for the first time that functional PAR-1 and -2 are present in human cornea. Activation of these receptors results in the production of various corneal epithelial cell proinflammatory cytokines. These observations indicate that PAR-1 and -2 may play an important role in modulating corneal inflammatory and wound-healing responses. These receptors may be useful therapeutic targets in several corneal disease processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.