Phospholipidosis (PLD) is characterized by the excessive intracellular accumulation of phospholipids. It is well established that a large number of cationic amphiphilic drugs have the potential to induce PLD. In the present study, we describe two facile in vitro methods to determine the PLD-inducing potential of a molecule. The first approach is based on a recent study by (Sawada et al., 2005, Toxicol. Sci. 83, 282-292) in which 17 genes were identified as potential biomarkers of PLD in HepG2 cells. To confirm the utility of this gene panel, we treated HepG2 cells with PLD-positive and -negative compounds and then analyzed gene expression using real-time PCR. Our initial analysis, which used a single dose of each drug, correctly identified five of eight positive compounds and four of four negative compounds. We then increased the doses of the three false negatives (amiodarone, tamoxifen, and loratadine) and found that the changes in gene expression became large enough to correctly identify them as PLD-inducing drugs. Our results suggest that a range of concentrations should be used to increase the accuracy of prediction in this assay. Our second approach utilized a fluorescently labeled phospholipid (LipidTox) which was added to the media of growing HepG2 cells along with compounds positive and negative for PLD. Phospholipid accumulation was determined using confocal microscopy and, more quantitatively, using a 96-well plate assay and a fluorescent plate reader. Using an expanded set of compounds, we show that this assay correctly identified 100% of PLD-positive and -negative compounds. Dose-dependent increases in intracellular fluorescent phospholipid accumulation were observed. We found that this assay was less time consuming, more sensitive, and higher throughput than gene expression analysis. To our knowledge, this study represents the first validation of the use of LipidTox in identifying drugs that can induce PLD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.