The degree of multiscale complexity in human behavioral regulation, such as that required for postural control, appears to decrease with advanced aging or disease. To help delineate causes and functional consequences of complexity loss, we examined the effects of visual and somatosensory impairment on the complexity of postural sway during quiet standing and its relationship to postural adaptation to cognitive dual tasking. Participants of the MOBILIZE Boston Study were classified into mutually exclusive groups: controls [intact vision and foot somatosensation, n = 299, 76 ± 5 (SD) yr old], visual impairment only (<20/40 vision, n = 81, 77 ± 4 yr old), somatosensory impairment only (inability to perceive 5.07 monofilament on plantar halluxes, n = 48, 80 ± 5 yr old), and combined impairments (n = 25, 80 ± 4 yr old). Postural sway (i.e., center-of-pressure) dynamics were assessed during quiet standing and cognitive dual tasking, and a complexity index was quantified using multiscale entropy analysis. Postural sway speed and area, which did not correlate with complexity, were also computed. During quiet standing, the complexity index (mean ± SD) was highest in controls (9.5 ± 1.2) and successively lower in the visual (9.1 ± 1.1), somatosensory (8.6 ± 1.6), and combined (7.8 ± 1.3) impairment groups (P = 0.001). Dual tasking resulted in increased sway speed and area but reduced complexity (P < 0.01). Lower complexity during quiet standing correlated with greater absolute (R = -0.34, P = 0.002) and percent (R = -0.45, P < 0.001) increases in postural sway speed from quiet standing to dual-tasking conditions. Sensory impairments contributed to decreased postural sway complexity, which reflected reduced adaptive capacity of the postural control system. Relatively low baseline complexity may, therefore, indicate control systems that are more vulnerable to cognitive and other stressors.
Background Recent findings suggest that transcranial direct current stimulation of the primary motor cortex may ameliorate freezing of gait. However, the effects of multitarget simultaneous stimulation of motor and cognitive networks are mostly unknown. The objective of this study was to evaluate the effects of multitarget transcranial direct current stimulation of the primary motor cortex and left dorsolateral prefrontal cortex on freezing of gait and related outcomes. Methods Twenty patients with Parkinson’s disease and freezing of gait received 20 minutes of transcranial direct current stimulation on 3 separate visits. Trans-cranial direct current stimulation targeted the primary motor cortex and left dorsolateral prefrontal cortex simultaneously, primary motor cortex only, or sham stimulation (order randomized and double-blinded assessments). Participants completed a freezing of gait-provoking test, the Timed Up and Go, and the Stroop test before and after each transcranial direct current stimulation session. Results Performance on the freezing of gait-provoking test (P = 0.010), Timed Up and Go (P = 0.006), and the Stroop test (P = 0.016) improved after simultaneous stimulation of the primary motor cortex and left dorsolateral prefrontal cortex, but not after primary motor cortex only or sham stimulation. Conclusions Transcranial direct current stimulation designed to simultaneously target motor and cognitive regions apparently induces immediate aftereffects in the brain that translate into reduced freezing of gait and improvements in executive function and mobility.
Objective The objective of this study was to test whether subsensory vibratory noise applied to the sole of the foot using a novel piezo-electric vibratory insole, can significantly improve sensation, enhance balance, and reduce gait variability in elderly people. We also aimed to determine the optimal level of vibratory noise, and whether the therapeutic effect would endure and the user’s sensory threshold would remain constant during the course of a day. Design A randomized single-blind crossover study of three subsensory noise stimulation levels on 3 separate days. Setting Balance and gait laboratory Participants 12 healthy community-dwelling elderly volunteers aged 65 – 90 years who could feel the maximum insole vibration. Intervention A urethane foam insole with the piezo-electric actuators delivering subsensory vibratory noise stimulation to the soles of the feet. Main Outcome Measures Balance, gait, and timed up-and-go tests. Results The vibratory insoles significantly improved performance on the timed up-and-go test, reduced the area of postural sway, and reduced the temporal variability of walking at both 70% and 85% of the sensory threshold and throughout the course of a day. Vibratory sensation thresholds remained relatively stable within and across study days. Conclusions This study provides proof of concept that the application of the principle of stochastic resonance to the foot sole sensory system using a new low voltage piezoelectric technology can improve measures of balance and gait that are associated with falls. Effective vibratory noise amplitudes range from 70% to 85% of the sensory thresholds and can be set once daily.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.