The production behavior of horizontal wells producing from Marcellus shale has not been well established due to limited production history. As a result a simple method for predicting the long-term production would be of interest to the industry. Several DCA models have been proposed specifically for unconventional gas reservoirs. However, their reliability to predict the long-term production for Marcellus shale horizontal wells has not been established. In this study, production and completion data from a number of horizontal wells completed in Marcellus shale were collected. In addition, the properties of Marcellus shale were measured in laboratory with precision equipment designed for unconventional formations. The field data as well the laboratory measured properties were utilized in conjunction with a commercial numerical simulator to predict the long-term production behavior of horizontal wells producing from Marcellus shale. The numerical model allowed for inclusion of adsorbed gas, multiple hydraulic fracture stages, as well as dual porosity behavior. The predicted production profiles were then utilized to evaluate the applicability of the various DCA models. Subsequently, a technique was developed to estimate the parameters of the DCA model to predict the long-term production based on the early production history as well as the key reservoir parameters. Finally, the results of the DCA model predictions were compared to the history-matched simulation model predictions for confirmation.
With the recent development of shale gas reservoirs such as the Marcellus using horizontal drilling and fracturing, it has become necessary to evaluate the amount of gas recoverable for both economic and operational purposes. As a result of limited production history, the production behavior of horizontal well producing from Marcellus shale has not been well established. A technique in accomplishing the estimation of future production history would be
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.