We introduce the Precise Synthetic Image and LiDAR (PreSIL) dataset for autonomous vehicle perception. Grand Theft Auto V (GTA V), a commercial video game, has a large detailed world with realistic graphics, which provides a diverse data collection environment. Existing works creating synthetic LiDAR data for autonomous driving with GTA V have not released their datasets, rely on an in-game raycasting function which represents people as cylinders, and can fail to capture vehicles past 30 metres. Our work creates a precise LiDAR simulator within GTA V which collides with detailed models for all entities no matter the type or position. The PreSIL dataset consists of over 50,000 frames and includes high-definition images with full resolution depth information, semantic segmentation (images), point-wise segmentation (point clouds), and detailed annotations for all vehicles and people. Collecting additional data with our framework is entirely automatic and requires no human annotation of any kind. We demonstrate the effectiveness of our dataset by showing an improvement of up to 5% average precision on the KITTI 3D Object Detection benchmark challenge when state-of-the-art 3D object detection networks are pre-trained with our data. The data and code are available at https://tinyurl.com/y3tb9sxy 1 Braden Hurl is with the David R.
Inter-vehicle communication for autonomous vehicles (AVs) stands to provide significant benefits in terms of perception robustness. We propose a novel approach for AVs to communicate perceptual observations, tempered by trust modelling of peers providing reports. Based on the accuracy of reported object detections as verified locally, communicated messages can be fused to augment perception performance beyond line of sight and at great distance from the ego vehicle. Also presented is a new synthetic dataset which can be used to test cooperative perception. The TruPercept dataset includes unreliable and malicious behaviour scenarios to experiment with some challenges cooperative perception introduces. The TruPercept runtime and evaluation framework allows modular component replacement to facilitate ablation studies as well as the creation of new trust scenarios we are able to show.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.