Molecularly functionalized single-walled carbon nanotubes (SWCNTs) are potentially useful for fiber optical applications due to their room temperature single-photon emission capacity at telecommunication wavelengths. Several distinct defect geometries are generated upon covalent functionalization. While it has been shown that the defect geometry controls electron localization around the defect site, thereby changing the electronic structure and generating new optically bright red-shifted emission bands, the reasons for such localization remain unexplained. Our joint experimental and computational studies of functionalized SWCNTs with various chiralities show that the value of mod(n-m,3) in an (n,m) chiral nanotube plays a key role in the relative ordering of defect-dependent emission energies. This dependence is linked to the complex nodal characteristics of electronic wave function extending along specific bonds in the tube, which justifies the defect-geometry dependent exciton localization. This insight helps to uncover the essential structural motifs allowing tuning the redshifts of emission energies in functionalized SWCNTs.
When molecules are coupled to an optical cavity, new light–matter hybrid states, so-called polaritons, are formed due to quantum light–matter interactions. With the experimental demonstrations of modifying chemical reactivities by forming polaritons under strong light–matter interactions, theorists have been encouraged to develop new methods to simulate these systems and discover new strategies to tune and control reactions. This review summarizes some of these exciting theoretical advances in polariton chemistry, in methods ranging from the fundamental framework to computational techniques and applications spanning from photochemistry to vibrational strong coupling. Even though the theory of quantum light–matter interactions goes back to the midtwentieth century, the gaps in the knowledge of molecular quantum electrodynamics (QED) have only recently been filled. We review recent advances made in resolving gauge ambiguities, the correct form of different QED Hamiltonians under different gauges, and their connections to various quantum optics models. Then, we review recently developed ab initio QED approaches which can accurately describe polariton states in a realistic molecule–cavity hybrid system. We then discuss applications using these method advancements. We review advancements in polariton photochemistry where the cavity is made resonant to electronic transitions to control molecular nonadiabatic excited state dynamics and enable new photochemical reactivities. When the cavity resonance is tuned to the molecular vibrations instead, ground-state chemical reaction modifications have been demonstrated experimentally, though its mechanistic principle remains unclear. We present some recent theoretical progress in resolving this mystery. Finally, we review the recent advances in understanding the collective coupling regime between light and matter, where many molecules can collectively couple to a single cavity mode or many cavity modes. We also lay out the current challenges in theory to explain the observed experimental results. We hope that this review will serve as a useful document for anyone who wants to become familiar with the context of polariton chemistry and molecular cavity QED and thus significantly benefit the entire community.
Chemical reactions between semiconducting single-wall carbon nanotubes (SWCNTs) and single-stranded DNA (ssDNA) achieve spatially patterned covalent functionalization sites and create coupled fluorescent quantum defects on the nanotube surface, tailoring SWCNT photophysics for applications such as single-photon emitters in quantum information technologies. The evaluation of relaxation dynamics of photoluminescence (PL) from those coupled quantum defects is essential for understanding the nanotube electronic structure and beneficial to the design of quantum light emitters. Here, we measured the PL decay for ssDNA-functionalized SWCNTs as a function of the guanine content of the ssDNA oligo that dictates the red-shifting of their PL emission peaks relative to the band-edge exciton. We then correlate the observed dependence of PL decay dynamics on energy red-shifts to the exciton potential energy landscape, which is modeled using first-principles approaches based upon the morphology of ssDNA-altered SWCNTs obtained by atomic force microscopy (AFM) imaging. Our simulations illustrate that the multiple guanine defects introduced within a single ssDNA strand strongly interact to create a deep exciton trapping well, acting as a single hybrid trap. The emission decay from the distinctive trapping potential landscape is found to be biexponential for ssDNA-modified SWCNTs. We attributed the fast time component of the biexponential PL decay to the redistribution of exciton population among the lowest energy bright states and a manifold of dark states emerging from the coupling of multiple guanine defects. The long lifetime component in the biexponential decay, on the other hand, is attributed to the redistribution of exciton population among different exciton trapping sites that arise from the binding of multiple ssDNA strands along the nanotube axis. AFM measurements indicate that those trapping sites are separated on average by ∼8 nm along the nanotube axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.