A web-based, collaborative distance-learning system that will allow groups of students to interact with each other remotely and with an intelligent electronic agent that will aid them in their learning has the potential for improving on-line learning. The agent would follow the discussion and interact with the participants when it detects learning trouble of some sort, such as confusion about the problem they are working on or a participant who is dominating the discussion or not interacting with the other participants. In order to recognize problems in the dialogue, we investigated conversational elements that can be utilized as predictors for effective and ineffective interaction between human students. These elements can serve as the basis for student and group models. In this paper, we discuss group interaction during collaborative learning, our representation of participant dialogue, and the statistical models we are using to determine the role being played by a participant at any point in the dialogue and the effectiveness of the group. We also describe student and group models that can be built using conversational elements and discuss one set that we built to illustrate their potential value in collaborative learning.
Our 1998 paper BEncouraging Student Reflection and Articulation using a Learning Companion^(Goodman et al. 1998) was a stepping stone in the progression of learning companions for intelligent tutoring systems (ITS). A simulated learning companion, acting as a peer in an intelligent tutoring environment ensures the availability of a collaborator and encourages the student to learn collaboratively, while drawing upon the instructional advantages that ITSs provide. This paper is a commentary on our 1998 paper, reflecting on that research and some of the subsequent relevant research by others and us since then in Learning Companions, Intelligent Tutoring Systems, and Collaborative Learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.