As levels of natural organic matter (NOM) in surface water rise, the minimization of potentially harmful disinfection by-products (DBPs) becomes increasingly critical. Here, we introduce the advantage that chromatographic prefractionation brings to investigating compositional changes to NOM caused by chlorination. Fractionation reduces complexity, making it easier to observe changes and attribute them to specific components. Under the conditions tested (0.1-0.4 g of Cl to g of C without further additives), the differences between highly and less oxidized NOM were striking. Highly oxidized NOM formed more diverse Cl-containing DPB, had a higher propensity to react with multiple Cl, and tended to transform so drastically as to no longer be amenable to electrospray-ionization mass spectral detection. Less-oxidized material tended to incorporate one Cl and retain its humiclike composition. N-containing, lipidlike, and condensed aromatic structure (CAS)-like NOM were selectively enriched in mass spectra, suggesting that such components do not react as extensively with NaOCl as their counterparts. Carbohydrate-like NOM, conversely, was selectively removed from spectra by chlorination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.