Enterococci are commensal organisms well suited to survival in intestinal and vaginal tracts and the oral cavity. However, as for most bacteria described as causing human disease, enterococci also possess properties that can be ascribed roles in pathogenesis. The natural ability of enterococci to readily acquire, accumulate, and share extrachromosomal elements encoding virulence traits or antibiotic resistance genes lends advantages to their survival under unusual environmental stresses and in part explains their increasing importance as nosocomial pathogens. This review discusses the current understanding of enterococcal virulence relating to (i) adherence to host tissues, (ii) invasion and abscess formation, (iii) factors potentially relevant to modulation of host inflammatory responses, and (iv) potentially toxic secreted products. Aggregation substance, surface carbohydrates, or fibronectin-binding moieties may facilitate adherence to host tissues. Enterococcus faecalis appears to have the capacity to translocate across intact intestinal mucosa in models of antibiotic-induced superinfection. Extracellular toxins such as cytolysin can induce tissue damage as shown in an endophthalmitis model, increase mortality in combination with aggregation substance in an endocarditis model, and cause systemic toxicity in a murine peritonitis model. Finally, lipoteichoic acid, superoxide production, or pheromones and corresponding peptide inhibitors each may modulate local inflammatory reactions.
SUMMARY Endophthalmitis is a severe inflammation of the interior of the eye caused by the introduction of contaminating microorganisms following trauma, surgery, or hematogenous spread from a distant infection site. Despite appropriate therapeutic intervention, bacterial endophthalmitis frequently results in visual loss, if not loss of the eye itself. Although the pathogenicity of bacterial endophthalmitis has historically been linked with toxin production during infection, a paucity of information exists as to the exact mechanisms of retinal toxicity and the triggers for induction of the intraocular immune response. Recently, research has begun to examine the bacterial and host molecular and cellular events that contribute to ocular damage during endophthalmitis. This review focuses on the causative agents and therapeutic challenges of bacterial endophthalmitis and provides current data from the analysis of the role of bacterial virulence factors and host inflammatory interactions in the pathogenesis of eye infections. Based on these and related studies, a hypothetical model for the molecular pathogenesis of bacterial endopthalmitis is proposed. Identifying and understanding the basic mechanisms of these bacterium-host interactions will provide the foundation for which novel, information-based therapeutic agents are developed in order to prevent vision loss during endophthalmitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.