We report measurements of the mass density, Ω M , and cosmological-constant energy density, Ω Λ , of the universe based on the analysis of 42 Type Ia supernovae discovered by the Supernova Cosmology Project. The magnitude-redshift data for these supernovae, at redshifts between 0.18 and 0.83, are fit jointly with a set of supernovae from the Calán/Tololo Supernova Survey, at redshifts below 0.1, to yield values for the cosmological parameters. All supernova peak magnitudes are standardized using a SN Ia lightcurve width-luminosity relation. The measurement yields a joint probability distribution of the cosmological parameters that is approximated by the relation 0.8 Ω M − 0.6 Ω Λ ≈ −0.2 ± 0.1 in the region of interest (Ω M ∼ < 1.5). For a flat (Ω M + Ω Λ = 1) cosmology we find Ω flat M = 0.28 +0.09 −0.08 (1σ statistical) +0.05 −0.04 (identified systematics). The data are strongly inconsistent with a Λ = 0 flat cosmology, the simplest inflationary universe model. An open, Λ = 0 cosmology also does not fit the data well: the data indicate that the cosmological constant is non-zero and positive, with a confidence of P(Λ > 0) = 99%, including the identified systematic uncertainties. The best-fit age of the universe relative to the Hubble time is t flat 0 = 14.9 +1.4 −1.1 (0.63/h) Gyr for a flat cosmology. The size of our sample allows us to perform a variety of statistical tests to check for possible systematic errors and biases. We find no significant differences in either the host reddening distribution or Malmquist bias between the low-redshift Calán/Tololo sample and our high-redshift sample. Excluding those few supernovae which are outliers in color excess or fit residual does not significantly change the results. The conclusions are also robust whether or not a width-luminosity relation is used to standardize the supernova peak magnitudes. We discuss, and constrain where possible, hypothetical alternatives to a cosmological constant.
The Swift mission, scheduled for launch in 2004, is a multiwavelength observatory for gamma-ray burst (GRB) astronomy. It is a first-of-its-kind autonomous rapid-slewing satellite for transient astronomy and pioneers the way for future rapid-reaction and multiwavelength missions. It will be far more powerful than any previous GRB mission, observing more than 100 bursts yr À1 and performing detailed X-ray and UV/optical afterglow observations spanning timescales from 1 minute to several days after the burst. The objectives are to (1) determine the origin of GRBs, (2) classify GRBs and search for new types, (3) study the interaction of the ultrarelativistic outflows of GRBs with their surrounding medium, and (4) use GRBs to study the early universe out to z > 10. The mission is being developed by a NASA-led international collaboration. It will carry three instruments: a newgeneration wide-field gamma-ray (15-150 keV ) detector that will detect bursts, calculate 1 0 -4 0 positions, and trigger autonomous spacecraft slews; a narrow-field X-ray telescope that will give 5 00 positions and perform spectroscopy in the 0.2-10 keV band; and a narrow-field UV/optical telescope that will operate in the 170-600 nm band and provide 0B3 positions and optical finding charts. Redshift determinations will be made for most bursts. In addition to the primary GRB science, the mission will perform a hard X-ray survey to a sensitivity of $1 mcrab ($2 ; 10 À11 ergs cm À2 s À1 in the 15-150 keV band ), more than an order of magnitude better than HEAO 1 A-4. A flexible data and operations system will allow rapid follow-up observations of all types of high-energy transients, with rapid data downlink and uplink available through the NASA TDRSS system. Swift transient data will be rapidly distributed to the astronomical community, and all interested observers are encouraged to participate in follow-up measurements. A Guest Investigator program for the mission will provide funding for community involvement. Innovations from the Swift program applicable to the future include (1) a large-area gamma-ray detector using the new CdZnTe detectors, (2) an autonomous rapid-slewing spacecraft, (3) a multiwavelength payload combining optical, X-ray, and gamma-ray instruments, (4) an observing program coordinated with other ground-based and space-based observatories, and (5) immediate multiwavelength data flow to the community. The mission is currently funded for 2 yr of operations, and the spacecraft will have a lifetime to orbital decay of $8 yr.
The ultimate fate of the universe, infinite expansion or a big crunch, can be determined by measuring the redshifts, apparent brightnesses, and intrinsic luminosities of very distant supernovae. Recent developments have provided tools that make such a program practicable: (1) Studies of relatively nearby
We present a new compilation of Type Ia supernovae (SNe Ia), a new data set of low-redshift nearby-Hubble-flow SNe, and new analysis procedures to work with these heterogeneous compilations. This ''Union'' compilation of 414 SNe Ia, which reduces to 307 SNe after selection cuts, includes the recent large samples of SNe Ia from the Supernova Legacy Survey and ESSENCE Survey, the older data sets, as well as the recently extended data set of distant supernovae observed with the Hubble Space Telescope (HST ). A single, consistent, and blind analysis procedure is used for all the various SN Ia subsamples, and a new procedure is implemented that consistently weights the heterogeneous data sets and rejects outliers. We present the latest results from this Union compilation and discuss the cosmological constraints from this new compilation and its combination with other cosmological measurements (CMB and BAO). The constraint we obtain from supernovae on the dark energy density is à ¼ 0:713 þ0:027 À0:029 (stat) þ0:036 À0:039 (sys), for a flat, ÃCDM universe. Assuming a constant equation of state parameter, w, the combined constraints from SNe, BAO, and A CMB give w ¼ À0:969 þ0:059 À0:063 (stat) þ0:063 À0:066 (sys). While our results are consistent with a cosmological constant, we obtain only relatively weak constraints on a w that varies with redshift. In particular, the current SN data do not yet significantly constrain w at z > 1. With the addition of our new nearby Hubble-flow SNe Ia, these resulting cosmological constraints are currently the tightest available.
The Hubble diagram (HD) is a plot of the measured distance modulus versus the measured redshift, with the slope giving the expansion history of our universe. In the late 1990's, observations of supernova out to a redshift of near unity demonstrated that the universal expansion is now accelerating, and this was the first real evidence for the mysterious energy we now call Dark Energy. One of the few ways to measure the properties of Dark Energy is to extend the HD to higher redshifts. Many models have been proposed that make specific predictions as to the shape of the HD and so this offers a means of testing and eliminating models. Taking the HD to high redshifts provides a way to test models where their differences are large. For example, in a comparison of the now concordance model (a flat universe with Ω M = 0.27 or so and constant Cosmological Constant) with a representative model of evolving Dark Energy (for which I'll take w(z) = −1.31 + 1.48z from Riess' analysis of the gold sample of supernovae), the predicted distance moduli differ by 0.15 mag at z = 1.7 and 1.00 mag at z = 6.6. The only way to extend the HD to high redshift is to use Gamma-Ray Bursts (GRBs). GRBs have been found to be reasonably good standard candles in the usual sense that light curve and/or spectral properties are correlated to the luminosity, exactly as for Cepheids and supernovae, then simple measurements can be used to infer their luminosities and hence distances. GRBs have at least five properties (their spectral lag, variability, spectral peak photon energy, time of the jet break, and the minimum rise time) which have correlations to the luminosity of varying quality. All of these properties provide independent distance information and their derived distances should be combined as a weighted average to get the best value. For GRBs which have an independently measured redshift from optical spectroscopy, we have enough information to plot the burst onto the HD. In this paper, I construct a GRB HD with 69 GRBs over a redshift range of 0.17 to >6, with half the bursts having a redshift larger than 1.7. This paper uses over 3.6 times as many GRBs and 12.7 times as many luminosity indicators as any previous GRB HD work. For constructing the GRB HD, it is important to perform the calibration of the luminosity relations for every separate cosmology -2considered, so that we are really performing a simultaneous fit to the luminosity relations plus the cosmological model. I have made detailed calculations of the gravitational lensing and Malmquist biases, including the effect of lensing de/magnification, volume effects, evolution of GRB number densities, the GRB luminosity function, and the discovery efficiencies as a function of brightness. From this, I find that the biases are small, with an average of 0.03 mag and an RMS scatter of 0.14 mag in the distance modulus. This surprising situation arises from two causes, the first being that burst peak fluxes above threshold do not vary with redshift and the second being that the four competing ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.