Many real world operational research problems, such as frequency assignment and exam timetabling, can be reformulated as graph colouring problems (GCPs). Most algorithms for the GCP operate under the assumption that its constraints are fixed, allowing us to model the problem using a static graph. However, in many real-world cases this does not hold and it is more appropriate to model problems with constraints that change over time using an edge dynamic graph. Although exploring methods for colouring dynamic graphs has been identified as an area of interest with many real-world applications, to date, very little literature exists regarding such methods. In this paper we present several heuristic methods for modifying a feasible colouring at time-step t into an initial, but not necessarily feasible, colouring for a "similar" graph at time-step t + 1. We will discuss two cases; (1) where changes occur at random, and (2) where probabilistic information about future changes is provided. Experimental results are also presented and the benefits of applying these particular modification methods are investigated.
Many real world operational research problems can be formulated as graph colouring problems. Algorithms for this problem usually operate under the assumption that the size and constraints of a problem are fixed, allowing us to model the problem using a static graph. For many problems however, this is not the case and it would be more appropriate to model such problems using dynamic graphs. In this paper we will explore whether feasible colourings for one graph at time-step t can be modified into a colouring for a similar graph at time-step t + 1 in some beneficial manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.