BackgroundFluorescent proteins have been used to generate a variety of biosensors to optically monitor biological phenomena in living cells. Among this class of genetically encoded biosensors, reporters for membrane potential have been a particular challenge. The use of presently known voltage sensor proteins is limited by incorrect subcellular localization and small or absent voltage responses in mammalian cells.ResultsHere we report on a fluorescent protein voltage sensor with superior targeting to the mammalian plasma membrane and high responsiveness to membrane potential signaling in excitable cells.Conclusions and SignificanceThis biosensor, which we termed VSFP2.1, is likely to lead to new methods of monitoring electrically active cells with cell type specificity, non-invasively and in large numbers, simultaneously.
This paper presents three examples of imaging brain activity with voltage- or calcium-sensitive dyes and then discusses the methodological aspects of the measurements that are needed to achieve an optimal signal-to-noise ratio. Internally injected voltage-sensitive dye can be used to monitor membrane potential in the dendrites of invertebrate and vertebrate neurons in in vitro preparations. Both invertebrate and vertebrate ganglia can be bathed in voltage-sensitive dyes to stain all of the cell bodies in the preparation. These dyes can then be used to follow the spike activity of many neurons simultaneously while the preparations are generating behaviors. Calcium-sensitive dyes that are internalized into olfactory receptor neurons in the nose will, after several days, be transported to the nerve terminals of these cells in the olfactory bulb. There they can be used to measure the input from the nose to the bulb. Three kinds of noise are discussed. a. Shot noise from the random emission of photons from the preparation. b. Vibrational noise from external sources. c. Noise that occurs in the absence of light, the dark noise. Three different parts of the light measuring apparatus are discussed: the light sources, the optics, and the cameras. The major effort presently underway to improve the usefulness of optical recordings of brain activity are to find methods for staining individual cell types in the brain. Most of these efforts center around fluorescent protein sensors of activity.
We previously reported the discovery of a fluorescent protein voltage probe, ArcLight, and its derivatives that exhibit large changes in fluorescence intensity in response to changes of plasma membrane voltage. ArcLight allows the reliable detection of single action potentials and sub-threshold activities in individual neurons and dendrites. The response kinetics of ArcLight (τ1-on ~10 ms, τ2-on ~ 50 ms) are comparable with most published genetically-encoded voltage probes. However, probes using voltage-sensing domains other than that from the Ciona intestinalis voltage sensitive phosphatase exhibit faster kinetics. Here we report new versions of ArcLight, in which the Ciona voltage-sensing domain was replaced with those from chicken, zebrafish, frog, mouse or human. We found that the chicken and zebrafish-based ArcLight exhibit faster kinetics, with a time constant (τ) less than 6ms for a 100 mV depolarization. Although the response amplitude of these two probes (8-9%) is not as large as the Ciona-based ArcLight (~35%), they are better at reporting action potentials from cultured neurons at higher frequency. In contrast, probes based on frog, mouse and human voltage sensing domains were either slower than the Ciona-based ArcLight or had very small signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.