Several rules-based algorithms have been developed to interpret results of HIV-1 genotypic resistance tests. To assess the concordance of these algorithms and to identify sequences causing interalgorithm discordances, we applied four publicly available algorithms to the sequences of isolates from 2,045 individuals in northern California. Drug resistance interpretations were classified as S for susceptible, I for intermediate, and R for resistant. Of 30,675 interpretations (2,045 sequences x 15 drugs), 4.4% were completely discordant, with at least one algorithm assigning an S and another an R; 29.2% were partially discordant, with at least one algorithm assigning an S and another an I, or at least one algorithm assigning an I and another an R; and 66.4% displayed complete concordance, with all four algorithms assigning the same interpretation. Discordances between nucleoside reverse transcriptase inhibitor interpretations usually resulted from several simple, frequently occurring mutational patterns. Discordances between protease inhibitor interpretations resulted from a larger number of more complex mutation patterns. Discordances between nonnucleoside reverse transcriptase inhibitor interpretations were uncommon and resulted from a small number of individual drug resistance mutations. Determining the clinical significance of these mutation patterns responsible for interalgorithm discordances will improve interalgorithm concordance and the accuracy of genotypic resistance interpretation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.