Salicyl alcohol and gentisyl alcohol are two important phenolic alcohols that possess significant biological activities and pharmaceutical properties. Here, we report establishment of novel biosynthetic pathways for microbial production of salicyl alcohol and gentisyl alcohol from renewable feedstocks. We first examined the promiscuity of the carboxylic acid reductase CAR toward salicylic acid and 2,5-DHBA, which enabled efficient synthesis of salicyl alcohol and gentisyl alcohol. Then, we employed a novel salicylic acid 5-hydroxylase to achieve 2,5-DHBA production from salicylic acid. After that, the de novo biosynthetic pathways were assembled and optimized by programming the carbon flux into the shikimate pathway. The final titers of salicyl alcohol and gentisyl alcohol reached to 594.4 mg/L and 30.1 mg/L, respectively. To our knowledge, this work achieved microbial production of salicyl alcohol and gentisyl alcohol for the first time. Our present study also demonstrated application of enzyme promiscuity to establish non-natural biosynthetic pathways for the production of high-value compounds.
A direct dearomative photocatalyzed (3+2) cycloaddition between indoles and vinyldiazo reagents is described. The transformation is enabled by the development of a novel oxidizing CrIII photocatalyst, its specific reactivity attributed to increased absorptive properties over earlier Cr analogs and greater stability than Ru counterparts. A variety of fused indoline compounds are synthesized using this method, including densely functionalized ring systems that are feasible due to base‐free conditions. Experimental insights corroborate a cycloaddition initiated by nucleophilic attack at C3 of the indole radical cation by the vinyldiazo species.
A direct dearomative photocatalyzed (3+2) cycloaddition between indoles and vinyldiazo reagents is described. The transformation is enabled by the development of a novel oxidizing CrIII photocatalyst, its specific reactivity attributed to increased absorptive properties over earlier Cr analogs and greater stability than Ru counterparts. A variety of fused indoline compounds are synthesized using this method, including densely functionalized ring systems that are feasible due to base‐free conditions. Experimental insights corroborate a cycloaddition initiated by nucleophilic attack at C3 of the indole radical cation by the vinyldiazo species.
A synthesis of a δ-ketohydroperoxide is described, addressing potential functional-group compatibilities in these elusive species relevant to combustion and atmospheric chemistries. The hydroperoxide is installed via sulfonylhydrazine substitution, which was found to be more effective than displacement of secondary halides. As part of this protocol, it was observed that 1,2-dimethoxyethane is an advantageous medium for the reaction, avoiding the formation of a tetrahydrofuran hydroperoxide side product. This discovery facilitated the multigram synthesis (6 steps, 41 % yield overall) and discrete characterization of the target δ-ketohydroperoxide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.