Mutants in the period-1 (prd-1) gene, characterized by a recessive allele, display a reduced growth rate and period lengthening of the developmental cycle controlled by the circadian clock. We refined the genetic location of prd-1 and used whole genome sequencing to find the mutation defining it, confirming the identity of prd-1 by rescuing the mutant circadian phenotype via transformation. PRD-1 is an RNA helicase whose orthologs, DDX5 [DEAD (Asp-Glu-Ala-Asp) Box Helicase 5] and DDX17 in humans and DBP2 (Dead Box Protein 2) in yeast, are implicated in various processes, including transcriptional regulation, elongation, and termination, ribosome biogenesis, and mRNA decay. Although prd-1 mutants display a long period (∼25 h) circadian developmental cycle, they interestingly display a WT period when the core circadian oscillator is tracked using a frq-luciferase transcriptional fusion under conditions of limiting nutritional carbon; the core oscillator in the prd-1 mutant strain runs with a long period under glucose-sufficient conditions. Thus, PRD-1 clearly impacts the circadian oscillator and is not only part of a metabolic oscillator ancillary to the core clock. PRD-1 is an essential protein, and its expression is neither light-regulated nor clock-regulated. However, it is transiently induced by glucose; in the presence of sufficient glucose, PRD-1 is in the nucleus until glucose runs out, which elicits its disappearance from the nucleus. Because circadian period length is carbon concentration-dependent, prd-1 may be formally viewed as a clock mutant with defective nutritional compensation of circadian period length.T he successful dissection of the molecular bases of circadian rhythms by the circadian community over the past three decades has been anchored, in every system from cyanobacteria to mammals, on the products of classical genetic screens for, and analysis of, circadian clock mutants, their molecular cloning, and the conservation of their function. Circadian period or expression mutants have been identified in a variety of organisms, including Neurospora, Drosophila, blowflies, Paramecium, Chlamydomonas, Arabidopsis, Synechococcus, hamsters, mice, and humans (reviewed in refs. 1-3). Among these circadian clock gene mutants, the greatest number in a single system have come from screens in Neurospora, where upwards of a dozen different genes have emerged from unbiased screens for genes informative of the circadian system. The protein products and cellular functions of nearly all of these genes are known, and this knowledge has played a central role in elucidation of the transcription/translation feedback loop model for animal and fungal clocks that guides most research on mammalian clock mechanism (reviewed, e.g., in refs. 4 and 5). Among these Neurospora genes, the product and role of the period-1 (prd-1) gene remains undescribed.The prd-1 gene [originally called frq-5 (frq, frequency) and later prd] was isolated in a UV-mutagenesis screen for period length mutants (6). On race tubes, the canonical mu...
The transcription–translation negative feedback loops underlying animal and fungal circadian clocks are remarkably similar in their molecular regulatory architecture and, although much is understood about their central mechanism, little is known about the spatiotemporal dynamics of the gene products involved. A common feature of these circadian oscillators is a significant temporal delay between rhythmic accumulation of clock messenger RNAs (mRNAs) encoding negative arm proteins, for example, frq in Neurospora and Per1-3 in mammals, and the appearance of the clock protein complexes assembled from the proteins they encode. Here, we report use of single-molecule RNA fluorescence in situ hybridization (smFISH) to show that the fraction of nuclei actively transcribing the clock gene frq changes in a circadian manner, and that these mRNAs cycle in abundance with fewer than five transcripts per nucleus at any time. Spatial point patterning statistics reveal that frq is spatially clustered near nuclei in a time of day–dependent manner and that clustering requires an RNA-binding protein, PRD-2 (PERIOD-2), recently shown also to bind to mRNA encoding another core clock component, casein kinase 1. An intrinsically disordered protein, PRD-2 displays behavior in vivo and in vitro consistent with participation in biomolecular condensates. These data are consistent with a role for phase-separating RNA-binding proteins in spatiotemporally organizing clock mRNAs to facilitate local translation and assembly of clock protein complexes.
Objective: The nuclear and mitochondrial genomes of Dictyostelium discoideum, a unicellular eukaryote, have relatively high A+T-contents of 77.5% and 72.65%, respectively. To begin to investigate how the pyrimidine biosynthetic pathway fulfills the demand for dTTP, we determined the catalytic properties and structure of the key enzyme deoxyuridine triphosphate nucleotidohydrolase (dUTPase) that hydrolyzes dUTP to dUMP, the precursor of dTTP. Results:The annotated genome of D. discoideum identifies a gene encoding a polypeptide containing the five conserved motifs of homotrimeric dUTPases. Recombinant proteins, comprised of either full-length or core polypeptides with all conserved motifs but lacking residues 1-37 of the N-terminus, were active dUTPases. Crystallographic analyses of the core enzyme indicated that the C-termini, normally flexible, were constrained by interactions with the shortened N-termini that arose from the loss of residues 1-37. This allowed greater access of dUTP to active sites, resulting in enhanced catalytic parameters. A tagged protein comprised of the N-terminal forty amino acids of dUTPase fused to green fluorescent protein (GFP) was expressed in D. discoideum cells. Supporting a prediction of mitochondrial targeting information within the N-terminus, localization and subcellular fractionation studies showed GFP to be in mitochondria. N-terminal sequencing of immunoprecipitated GFP revealed the loss of the dUTPase sequence upon import into the organelle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.