In 2016, the World Health Organization deemed antibiotic resistance one of the biggest threats to global health, food security, and development. The need for new methods to combat infections caused by antibiotic resistant pathogens will require a variety of approaches to identifying effective new therapeutic strategies. One approach is the identification of small molecule adjuvants that potentiate the activity of antibiotics of demonstrated utility, whose efficacy is abated by resistance, both acquired and intrinsic. To this end, we have identified compounds that enhance the efficacy of antibiotics normally ineffective against Gram-negative pathogens because of the outer membrane permeability barrier. We identified two adjuvant compounds that dramatically enhance sensitivity of Acinetobacter baumannii to macrolide and glycopeptide antibiotics, with reductions in minimum inhibitory concentrations as high as 256-fold, and we observed activity across a variety of clinical isolates. Mode of action studies indicate that these adjuvants likely work by modulating lipopolysaccharide synthesis or assembly. The adjuvants were active in vivo in a Galleria mellonella infection model, indicating potential for use in mammalian infections.
2-aminoimidazole (2-AI) compounds inhibit the formation of bacterial biofilms, disperse preformed biofilms, and re-sensitize multidrug resistant bacteria to antibiotics. 2-AIs have previously been shown to interact with bacterial response regulators, but the mechanism of interaction is still unknown. Response regulators are one part of two-component systems (TCS). TCSs allow cells to respond to changes in their environment, and are used to trigger quorum sensing, virulence factors, and antibiotic resistance. Drugs that target the TCS signaling process can inhibit pathogenic behavior, making this a potent new therapeutic approach that has not yet been fully exploited. We previously laid the groundwork for the interaction of the Acinetobacter baumannii response regulator BfmR with an early 2-AI derivative. Here, we further investigate the response regulator/2-AI interaction and look at a wider library of 2-AI compounds. By combining molecular modeling with biochemical and cellular studies, we expand on a potential mechanism for interaction between response regulators and 2-AIs. We also establish that Francisella tularensis/novicida, encoding for only three known response regulators, can be a model system to study the interaction between 2-AIs and response regulators. We show that knowledge gained from studying Francisella can be applied to the more complex A. baumannii system, which contains over 50 response regulators. Understanding the impact of 2-AIs on response regulators and their mechanism of interaction will lead to the development of more potent compounds that will serve as adjuvant therapies to broad-range antibiotics.
A major contributor to fatalities in cystic fibrosis (CF) patients stems from infection with opportunistic bacterium Pseudomonas aeruginosa. As a result of the CF patient's vulnerability to bacterial infections, one of the main treatment focuses is antibiotic therapy. However, the highly adaptive nature of P. aeruginosa, in addition to the intrinsic resistance to many antibiotics exhibited by most Gram-negative bacteria, means that multi-drug-resistant (MDR) strains are increasingly prevalent. This makes the eradication of pseudomonal lung infections nearly impossible once the infection becomes chronic. New methods to treat pseudomonal infections are greatly needed in order to eradicate MDR bacteria found within the respiratory tract, and ultimately better the quality of life for CF patients. Herein, we describe a novel approach to combatting pseudomonal infections through the use of bis-2-aminoimidazole adjuvants that can potentiate the activity of a macrolide antibiotic commonly prescribed to CF patients as an anti-inflammatory agent. Our lead bis-2-AI exhibits a 1024-fold reduction in the minimum inhibitory concentration of azithromycin in vitro and displays activity in a Galleria mellonella model of infection.
Antibiotic resistance has become increasingly prevalent over the past few decades, and this combined with a dearth in the development of new classes of antibiotics to treat multidrug resistant Gram-negative infections has led to a significant global health problem and the increased usage of colistin as the last resort antibiotic. Colistin, however, presents dose dependent toxicity in the clinic. One potential approach to combatting this problem is the use of an antibiotic adjuvant, a compound that is nontoxic to the bacteria that enhances the potency of colistin and ultimately allows for reducing dosing. Herein, we present a new urea-containing class of 2-aminoimidazole-based adjuvants that potentiates colistin activity against colistin-sensitive Acinetobacter baumannii. Lead compounds enabled 1000-fold reduction in the minimum inhibitory concentration of colistin in vitro and showed efficacy in a Galleria mellonella infection model, representing the first step toward validating the potential of employing these adjuvants to lower colistin dosage.
A library of 2-aminobenzimidazole derivatives was screened for the ability to suppress β-lactam resistance in Mycobacterium smegmatis. Several non-bactericidal compounds were identified that reversed intrinsic resistance to β-lactam antibiotics in a manner distinct from β-lactamase inhibitors. Activity also translates to M. tuberculosis, with a lead compound from this study potently suppressing carbenicillin resistance in multiple M. tuberculosis strains (including multidrug-resistant strains). Preliminary mechanistic studies revealed that the lead compounds act through a mechanism distinct from that of traditional β-lactamase inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.