Summary Z- ring assembly requires polymers of the tubulin homolog FtsZ to be tethered to the membrane. Although either ZipA or FtsA is sufficient to do this, both of these are required for recruitment of downstream proteins to form a functional cytokinetic ring. Gain of function mutations in ftsA, such as ftsA* (ftsA-R286W), bypass the requirement for ZipA suggesting that this atypical, well conserved, actin homolog, has a more critical role in Z-ring function. FtsA forms multimers both in vitro and in vivo, but little is known about the role of FtsA polymerization. In this study we identify FtsA mutants impaired for self-interaction. Such mutants are able to support Z-ring assembly and are also able to bypass the requirement for ZipA. These mutants, including FtsA*, have reduced ability to self-interact but interact normally with FtsZ and are less toxic if overexpressed. These results do not support a model in which FtsA monomers antagonize FtsZ polymers. Instead, we propose a new model in which FtsA self-interaction competes with its ability to recruit downstream proteins. In this model FtsA self-interaction at the Z ring is antagonized by ZipA, allowing unpolymerized FtsA to recruit downstream proteins such as FtsN.
Chronic injury to intrahepatic bile duct epithelial cells (BDECs) elicits expression of various mediators,including the ␣V6 integrin, promoting liver fibrosis. We tested the hypothesis that tissue factor (TF)-dependent thrombin generation and protease activated receptor-1 (PAR-1) activation contribute to liver fibrosis induced by cholestasis via induction of ␣V6 expression. To test this hypothesis, mice deficient in either TF or PAR-1 were fed a diet containing 0.025% ␣-naphthylisothiocyanate (ANIT), a BDEC-selective toxicant. In genetically modified mice with a 50% reduction in liver TF activity fed an ANIT diet, coagulation cascade activation and liver fibrosis were reduced. Similarly, liver fibrosis was significantly reduced in PAR-1 ؊/؊ mice fed an ANIT diet. Hepatic integrin 6 mRNA induction, expression of ␣V6 protein by intrahepatic BDECs, and SMAD2 phosphorylation were reduced by TF deficiency and PAR-1 deficiency in mice fed the ANIT diet. Treatment with either an anti-␣V6 blocking antibody or soluble transforming growth factor- receptor type II reduced liver fibrosis in mice fed the ANIT diet. PAR-1 activation enhanced transforming growth factor-1-induced integrin 6 mRNA expression in both transformed human BDECs and primary rat BDECs. Interestingly, TF and PAR-1 mRNA levels were increased in livers from patients with cholestatic liver disease. These results indicate that a TF-PAR-1 pathway contributes to liver fibrosis induced by chronic cholestasis by increasing expression of the ␣V6 integrin, an important regulator of transforming growth factor-1 activation.
Autoimmune diseases such as multiple sclerosis (MS) are typified by the misrecognition of self-antigen and the clonal expansion of autoreactive T cells. Antigen-specific immunotherapies (antigen-SITs) have long been explored as a means to desensitize patients to offending self-antigen(s) with the potential to retolerize the immune response. Soluble antigen arrays (SAgAs) are composed of hyaluronic acid (HA) cografted with disease-specific autoantigen (proteolipid protein peptide) and an ICAM-1 inhibitor peptide (LABL). SAgAs were designed as an antigen-SIT that codeliver peptides to suppress experimental autoimmune encephalomyelitis (EAE), a murine model of MS. Codelivery of antigen and cell adhesion inhibitor (LABL) conjugated to HA was essential for SAgA treatment of EAE. Individual SAgA components or mixtures thereof reduced proinflammatory cytokines in cultured splenocytes from EAE mice; however, these treatments showed minimal to no in vivo therapeutic effect in EAE mice. Thus, carriers that codeliver antigen and a secondary “context” signal (e.g., LABL) in vivo may be an important design criteria to consider when designing antigen-SIT for autoimmune therapy.
Hepatic fibrin(ogen) has been noted to occur after acetaminophen (APAP)-induced liver injury in mice. Deficiency in plasminogen activator inhibitor-1 (PAI-1), an endogenous inhibitor of fibrinolysis, increases APAP-induced liver injury in mice. However, the roles of fibrinogen and fibrinolysis in APAP-induced liver injury are not known. We tested the hypothesis that hepatic fibrin(ogen) deposition reduces severity of APAP-induced liver injury. APAP-induced (300 mg/kg) liver injury in mice was accompanied by thrombin generation, consumption of plasma fibrinogen, and deposition of hepatic fibrin. Neither fibrinogen depletion with ancrod nor complete fibrinogen deficiency [via knockout of the fibrinogen alpha chain gene (Fbg(-/-))] affected APAP-induced liver injury. PAI-1 deficiency (PAI-1(-/-)) increased APAP-induced liver injury and hepatic fibrin deposition 6 hours after APAP administration, which was followed by marked hemorrhage at 24 hours. As in PAI-1(-/-) mice, administration of recombinant tissue plasminogen activator (tenecteplase, 5 mg/kg) worsened APAP-induced liver injury and hemorrhage in wild-type mice. In contrast, APAP-induced liver injury was reduced in both plasminogen-deficient mice and in wild-type mice treated with tranexamic acid, an inhibitor of plasminogen activation. Activation of matrix metalloproteinase 9 (MMP-9) paralleled injury, but MMP-9 deficiency did not affect APAP-induced liver injury. The results indicate that fibrin(ogen) does not contribute to development of APAP-induced liver injury and suggest rather that plasminogen activation contributes to APAP-induced liver injury.
Key Points• Platelets and PAR-4 contribute to the progression of APAPinduced liver injury in mice through independent pathways.Acetaminophen (APAP)-induced liver injury in humans is associated with robust coagulation cascade activation and thrombocytopenia. However, it is not known whether coagulation-driven platelet activation participates in APAP hepatotoxicity. Here, we found that APAP overdose in mice caused liver damage accompanied by significant thrombocytopenia and accumulation of platelets in the liver. These changes were attenuated by administration of the direct thrombin inhibitor lepirudin. Platelet depletion with an anti-CD41 antibody also significantly reduced APAP-mediated liver injury and thrombin generation, indicated by the concentration of thrombin-antithrombin (TAT) complexes in plasma. Compared with APAP-treated wild-type mice, biomarkers of hepatocellular and endothelial damage, plasma TAT concentration, and hepatic platelet accumulation were reduced in mice lacking protease-activated receptor (PAR)-4, which mediates thrombin signaling in mouse platelets. However, selective hematopoietic cell PAR-4 deficiency did not affect APAP-induced liver injury or plasma TAT levels. These results suggest that interconnections between coagulation and hepatic platelet accumulation promote APAP-induced liver injury, independent of platelet PAR-4 signaling. Moreover, the results highlight a potential contribution of nonhematopoietic cell PAR-4 signaling to APAP hepatotoxicity. (Blood. 2015;126(15):1835-1843 Introduction Acetaminophen (APAP) hepatotoxicity is the leading cause of druginduced liver injury and acute liver failure in the United States and other developed countries.1-4 Even though APAP hepatotoxicity has been recognized for more than 50 years, the main treatment options for overdose have been limited to early treatment with N-acetylcysteine and liver transplantation in the most severe cases. Many studies have been conducted to understand the mechanisms of APAP hepatotoxicity and to seek alternative therapies. It is commonly understood from early studies in murine models that APAP overdose leads to excessive production of the reactive metabolite, N-acetyl-p-benzoquinoneimine (NAPQI), and consequent depletion of hepatic glutathione (GSH), which is responsible for detoxifying NAPQI. This depletion of GSH permits NAPQI binding to cellular proteins, and this initiating event is followed by a myriad of cellular and molecular events involving parenchymal and nonparenchymal cells that ultimately determine the severity of liver damage. 5-10Evidence supports a role for numerous mediators in the pathogenesis of APAP-induced liver injury, including nitric oxide (NO) and peroxynitrite formation, oxidative stress, mitochondrial injury, alteration in hepatic blood flow, and the innate immune response. [8][9][10][11] APAP overdose is associated with activation of the coagulation cascade in mice and in humans.12-14 Indeed, consumptive coagulopathy is one of the major clinical signs in acute liver failure from AP...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.