Previous research shows that teams with diverse backgrounds and skills can outperform homogeneous teams. However, people often prefer to work with others who are similar and familiar to them and fail to assemble teams with high diversity levels. We study the team formation problem by considering a pool of individuals with different skills and characteristics, and a social network that captures the familiarity among these individuals. The goal is to assign all individuals to diverse teams based on their social connections, thereby allowing them to preserve a level of familiarity. We formulate this team formation problem as a multi-objective optimization problem to split members into well-connected and diverse teams within a social network. We implement this problem employing the Non-dominated Sorting Genetic Algorithm II (NSGA-II), which finds team combinations with high familiarity and diversity levels in O(n2) time. We tested this algorithm on three empirically collected team formation datasets and against three benchmark algorithms. The experimental results confirm that the proposed algorithm successfully formed teams that have both diversity in member attributes and previous connections between members. We discuss the benefits of using computational approaches to augment team formation and composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.