The propagation of electric discharge streamers inside bubbles in liquids is of interest for the remediation of toxins in water and plasma-based surgical instruments. The manner of streamer propagation has an important influence on the production of reactive species that are critical to these applications. Streamer propagation along the surface of electrode-attached bubbles of air in water, previously predicted by numerical simulations, has been experimentally imaged using a fast frame-rate camera. The successive pulsing of the streamer discharge inside the bubbles produced oscillations along the air-water interface. Subsequent streamers were observed to closely follow surface distortions induced by such oscillations. The oscillations likely arise from the non-uniform perturbation of the bubble driven by the electric field of the streamer and were found to be consistent with Kelvin's equation for capillary oscillations. For a narrow range of applied voltage pulse frequencies, the oscillation amplitude increased over several pulse periods indicating, potentially, resonant behaviour. We also observed coupling between bubbles wherein oscillations in a second bubble without an internal discharge were induced by the presence of a streamer in a fixed bubble.
The generation of plasma in underwater gas bubbles offers the potential to produce large volume plasma in water while minimizing electrode erosion. Such attributes are desirable for the design of plasma-based water purification systems. In this work, gas bubbles of diameter 0.4-0.7 mm were trapped in the node of a 26.4 kHz underwater acoustic standing wave and pulsed with voltages in the range 10-14 kV. Plasma formation in trapped, isolated bubbles was observed to occur through two separate pathways: (1) plasma generated in the bubble through impact by a liquid streamer and (2) plasma generated in the bubble due solely to the applied electric field. The former case demonstrates the mechanism of so-called streamer hopping in which the discharge transitions from a water streamer to a gaseous surface streamer. Perturbations of the bubble's fluid boundary due to the streamer are also discussed.
Gas bubbles submerged in a dielectric liquid and driven by an electric field can undergo dramatic changes in both shape and volume. In certain cases, this deformation can enhance the distribution of the applied field inside the bubble as well as decrease the internal gas pressure. Both effects will tend to facilitate plasma formation in the gas volume. A practical realization of these two effects could have a broad impact on the viability of liquid plasma technologies, which tend to suffer from high voltage requirements. In this experiment, bubbles of diameter 0.4-0.7 mm are suspended in the node of a 26.4 kHz underwater acoustic standing wave and excited into nonlinear shape oscillations using ac electric fields with amplitudes of 5-15 kV cm −1. Oscillations of the deformed bubble are photographed with a high-speed camera operating at 5130 frames s −1 and the resulting images are decomposed into their axisymmetric spherical harmonic modes, Y 0 l , using an edge detection algorithm. Overall, the bubble motion is dominated by the first three even modes l = 0, 2 and 4. Electrostatic simulations of the deformed bubble's internal electric field indicate that the applied field is enhanced by as much as a factor of 2.3 above the nominal applied field. Further simulation of both the pure l = 2 and l = 4 modes predicts that with additional deformation, the field enhancement factors could reach as much as 10-50.
Plasma-in-water based technological approaches offer great potential to addressing a wide range of contaminants threatening the safety of freshwater reserves. Widespread application of plasma-based technologies, however require a better understanding of plasma formation processes in water and the nature of the plasma-driven chemistry in solution. In this paper, we survey the scope of the threat to freshwater via contamination from a variety of sources, the status of conventional treatment technologies, the promise of plasma-based water purification, and the pathway to understanding plasma formation in water through the study of single bubble breakdown physics. Plasma formation in bubbles lie at the heart of plasma formation in liquid water. We present findings from ongoing research at the University of Michigan aimed at understanding the nature of plasma formation in bubbles, which provides an avenue for not only understanding breakdown conditions, but also insight in reducing the magnitude of the breakdown voltage. These experiments also establish an approach to a standardized apparatus for the study of plasma discharges in bubbles. We also discuss approaches to controlling plasma-induced chemistry in liquid water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.