Identification and accurate quantitation of host cell proteins (HCPs) in biotherapeutic drugs has become increasingly important due to the negative impact of certain HCPs on the safety, stability, and other product quality of biotherapeutics. Recently, several lipase HCPs have been identified to potentially cause the enzymatic degradation of polysorbate, a widely used excipient in the formulation of biotherapeutics, which can severely impact the stability and product quality of drug products. In this study, we identified three lipase HCPs that were frequently detected in Chinese hamster ovary (CHO) cell cultures using shotgun proteomics, including phospholipase B-like 2 (PLBL2), lipoprotein lipase (LPL), and lysosomal acid lipase (LIPA). A targeted quantitation method for these three lipase HCPs was developed utilizing liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) with high-resolution multiple-reaction-monitoring (MRMhr) quantitation. The method demonstrated good sensitivity with low limit of quantitation (LLOQ) around 1 ng/mL, and linear dynamic range of three orders of magnitude for the three lipase HCPs. It has been applied for the characterization of process intermediates from various in-house monoclonal antibody (mAb) production. In addition, the method has also been used to evaluate the robustness of clearance for one of the lipase HCPs, PLBL2, under different column purification process conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.