The design, synthesis, and pharmacological properties of a novel type of 4-(1,2,5,6-tetrahydro-1-alkyl-3-pyridinyl)-2-thiazolamine with dopaminergic properties are described. In particular, 4-(1,2,5,6-tetrahydro-1-propyl-3-pyridinyl)-2-thiazolamine (4c, PD 118440) and its allyl analogue (4i, PD 120697) have been identified as orally active dopamine (DA) agonists with pronounced central nervous system effects in tests that include [3H]-haloperidol and [3H]-N-propylnorapomorphine binding, inhibition of striatal DA synthesis, inhibition of DA neuronal firing, inhibition of spontaneous locomotor activity, and reversal of reserpine-induced depression in rats. The DA autoreceptor selectivity of these heterocyclic analogues of 3-(1-propyl-3-piperidinyl)phenol (3-PPP) was also evaluated. In this series, DA agonist activity was found to be highly dependent on the size of the N-alkyl substituent, the saturation level of the six-membered ring, and the mode of attachment of the 2-aminothiazole ring.
A series of 2-amino-4H-3,1-benzoxazin-4-ones have been synthesized and evaluated as inhibitors of the complement enzyme C1r. C1r is a serine protease at the beginning of the complement cascade, and complement activation by beta-amyloid may represent a major contributing pathway to the neuropathology of Alzheimer's disease. Compounds such as 7-chloro-2-[(2-iodophenyl)-amino]benz[d][1,3]oxazin-4-one (32) and 7-methyl-2-[(2-iodophenyl)amino]benz[d][1,3]oxazin-4-one (37) show improved potency compared to the reference compound FUT-175. Many of these active compounds also possess increased selectivity for C1r compared to trypsin and enhanced hydrolytic stability relative to 2-(2-iodophenyl)-4H-3,1-benzoxazin-4-one (1).
The enantiomers of reduced haloperidol (3a), azaperol (3b), and the related compound BMY-14802 (3c) were prepared in high optical purity. The affinity of these compounds for dopamine D2 and D3 receptors, and sigma S1 and S2 sites was determined in vitro. Both enantiomers of 3a display greatly decreased affinity for D2 and D3 receptors compared to haloperidol, although they still possess affinities in the 100-200-nM range. Both enantiomers of 3a possess potent and equal affinity for S1 sites (Ki: 1-2 nM), only slightly weaker than haloperidol (Ki: 0.33 nM). At S2 sites, (R)-(+)-3a displays similar affinity to haloperidol (Ki: 31 and 26 nM, respectively), while (S)-(-)-3a is slight more potent (Ki: 8.2 nM). The stereoselectivity profile of the enantiomers of 3b at D2 and D3 receptors is quite similar to that of 3a, (S)-(-)-3b being about 4 times more potent than its enantiomer at both receptors. (R)-(+)-3b binds preferentially to sigma S1 over S2 sites, while (S)-(-)-3b displays the opposite selectivity profile. Both enantiomers of 3c possess very weak affinity for D2 and D3 receptors. In a manner similar to the enantiomers of 3b, the affinity of (R)-(+)-3c is greater for S1 than S2 sites, while (S)-(-)-3c displays the opposite selectivity profile. Following parenteral administration of both enantiomers of 3a, dopamine synthesis and turnover in rat striatum, cortex, and mesolimbic areas were increased, in a manner similar to the effects produced by haloperidol itself. Additional studies will be required to assess with certainty whether the effects were due to the compounds themselves or simply were a consequence of the in vivo oxidation to haloperidol.
A series of rigid tricyclic analogues of the dopamine (DA) agonist PD 118440 [4-(1,2,5,6-tetrahydro-1-propyl-3-pyridinyl)-2-thiazolamine] was synthesized and evaluated for dopaminergic activity and DA autoreceptor selectivity. (R)-(+)-6-Propyl-4,5,5a,6,7,8-hexahydrothiazolo[4,5-f]quinolin+ ++-2-amine [+)-6) was identified as the most selective DA autoreceptor agonist from this group of compounds. It inhibited spontaneous locomotor activity (LMA) in rodents, reversed the gamma-butyrolactone (GBL) induced accumulation of rat striatal DOPA and inhibited brain DA neuronal firing, all suggestive of direct DA autoreceptor agonist activity. However, (+)-6 is not completely free of postsynaptic DA activity, as evidenced by its stimulation of LMA in rats at high doses and its ability to produce stereotypy. On the other hand, (-)-6 appears to be a weak partial DA agonist with some effects on brain DA synthesis only at high doses. Like other DA autoreceptor agonists and DA antagonists, (+)-6 inhibited Sidman conditioned avoidance in squirrel monkeys, a test predictive of clinical antipsychotic activity. However, unlike classical antipsychotics, (+)-6 did not induce dystonias in haloperidol-sensitized squirrel monkeys, suggesting a minimal propensity toward extrapyramidal side effects (EPS).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.