Clinical outcome upon infection with SARS-CoV-2 ranges from silent infection to lethal COVID-19. We have found an enrichment in rare variants predicted to be loss-of-function (LOF) at the 13 human loci known to govern TLR3- and IRF7-dependent type I interferon (IFN) immunity to influenza virus, in 659 patients with life-threatening COVID-19 pneumonia, relative to 534 subjects with asymptomatic or benign infection. By testing these and other rare variants at these 13 loci, we experimentally define LOF variants in 23 patients (3.5%), aged 17 to 77 years, underlying autosomal recessive or dominant deficiencies. We show that human fibroblasts with mutations affecting this pathway are vulnerable to SARS-CoV-2. Inborn errors of TLR3- and IRF7-dependent type I IFN immunity can underlie life-threatening COVID-19 pneumonia in patients with no prior severe infection.
The caspase recruitment domain family member 11 (CARD11 or CARMA1)—B cell CLL/lymphoma 10 (BCL10)—MALT1 paracaspase (MALT1) [CBM] signalosome complex serves as a molecular bridge between cell surface antigen receptor signaling and the activation of the NF-κB, JNK, and mTORC1 signaling axes. This positions the CBM complex as a critical regulator of lymphocyte activation, proliferation, survival, and metabolism. Inborn errors in each of the CBM components have now been linked to a diverse group of human primary immunodeficiency diseases termed “CBM-opathies.” Clinical manifestations range from severe combined immunodeficiency to selective B cell lymphocytosis, atopic disease, and specific humoral defects. This surprisingly broad spectrum of phenotypes underscores the importance of “tuning” CBM signaling to preserve immune homeostasis. Here, we review the distinct clinical and immunological phenotypes associated with human CBM complex mutations and introduce new avenues for targeted therapeutic intervention.
Traumatic brain injury (TBI) affects 10 million people worldwide, annually. TBI is linked to increased risk of psychiatric disorders. TBI, induced by explosive devices, has a unique phenotype. Over one-third of people exposed to blast-induced TBI (bTBI) have prolonged neuroendocrine deficits, shown by anterior pituitary dysfunction. Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is linked to increased risk for psychiatric disorders. Not only is there limited information on how the HPA axis responds to mild bTBI (mbTBI), sex differences are understudied. We examined central and peripheral HPA axis reactivity, 7 to 10 days after mbTBI in male and female mice. Males exposed to mbTBI had increased restraint-induced serum corticosterone (CORT), but attenuated restraint-induced corticotropin-releasing factor (CRF)/c-Fos-immunoreactivity (ir) in the paraventricular nucleus of the hypothalamus (PVN). Females displayed an opposite response, with attenuated restraint-induced CORT and enhanced restraint-induced PVN CRF/c-Fos-ir. We examined potential mechanisms underlying this dysregulation and found that mbTBI did not affect pituitary (pro-opiomelanocortin and CRF receptor subtype 1) or adrenal (11β-hydroxylase, 11β-dehydrogenase 1, and melanocortin 2 receptor) gene expression. mbTBI did not alter mineralocorticoid or glucocorticoid gene expression in the PVN or relevant limbic structures. In females, but not males, mbTBI decreased c-Fos-ir in non-neuroendocrine (presumably preautonomic) CRF neurons in the PVN. Whereas we demonstrated a sex-dependent link to stress dysregulation of preautonomic neurons in females, we hypothesize that mbTBI may disrupt limbic pathways involved in HPA axis coordination in males. Overall, mbTBI altered the HPA axis in a sex-dependent manner, highlighting the importance of developing therapies to target individual strategies that males and females use to cope with mbTBI.
Summary
Genetic testing has increased the number of variants identified in disease genes, but the diagnostic utility is limited by lack of understanding variant function.
CARD11
encodes an adaptor protein that expresses dominant-negative and gain-of-function variants associated with distinct immunodeficiencies. Here, we used a “cloning-free” saturation genome editing approach in a diploid cell line to simultaneously score 2,542 variants for decreased or increased function in the region of
CARD11
associated with immunodeficiency. We also described an exon-skipping mechanism for CARD11 dominant-negative activity. The classification of reported clinical variants was sensitive (94.6%) and specific (88.9%), which rendered the data immediately useful for interpretation of seven coding and splicing variants implicated in immunodeficiency found in our clinic. This approach is generalizable for variant interpretation in many other clinically actionable genes, in any relevant cell type.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.