Streptococcus pyogenes (Lancefield group A Streptococcus [GAS]) is a β-hemolytic human-selective pathogen that is responsible for a large number of morbid and mortal infections in humans. For efficient infection, GAS requires different types of surface proteins that provide various mechanisms for evading human innate immune responses, thus enhancing pathogenicity of the bacteria. Many such virulence-promoting proteins, including the major surface signature M protein, are translocated after biosynthesis through the cytoplasmic membrane and temporarily tethered to this membrane via a type 1 transmembrane domain (TMD) positioned near the COOH terminus. In these proteins, a sorting signal, LPXTG, is positioned immediately upstream of the TMD, which is cleaved by the membrane-associated transpeptidase, sortase A (SrtA), leading to the covalent anchoring of these proteins to newly emerging l-Ala–l-Ala cross-bridges of the growing peptidoglycan cell wall. Herein, we show that inactivation of the srtA gene in a skin-tropic pattern D GAS strain (AP53) results in retention of the M protein in the cell membrane. However, while the isogenic AP53 ΔsrtA strain is attenuated in overall pathogenic properties due to effects on the integrity of the cell membrane, our data show that the M protein nonetheless can extend from the cytoplasmic membrane through the cell wall and then to the surface of the bacteria and thereby retain its important properties of productively binding and activating fluid-phase host plasminogen (hPg). The studies presented herein demonstrate an underappreciated additional mechanism of cell surface display of bacterial virulence proteins via their retention in the cell membrane and extension to the GAS surface. IMPORTANCE Group A Streptococcus pyogenes (GAS) is a human-specific pathogen that produces many surface factors, including its signature M protein, that contribute to its pathogenicity. M proteins undergo specific membrane localization and anchoring to the cell wall via the transpeptidase sortase A. Herein, we explored the role of sortase A function on M protein localization, architecture, and function, employing, a skin-tropic GAS isolate, AP53, which expresses a human plasminogen (hPg)-binding M (PAM) Protein. We showed that PAM anchored in the cell membrane, due to the targeted inactivation of sortase A, was nonetheless exposed on the cell surface and functionally interacted with host hPg. We demonstrate that M proteins, and possibly other sortase A-processed proteins that are retained in the cell membrane, can still function to initiate pathogenic processes by this underappreciated mechanism.
Human plasminogen (hPg)-binding M-protein (PAM), a major virulence factor of Pattern D Streptococcus pyogenes (GAS), is the primary receptor responsible for binding and activating hPg. PAM is covalently bound to the cell wall (CW) through cell membrane (CM)-resident sortase A (SrtA)-catalyzed cleavage of the PAM-proximal C-terminal LPST¯-GEAA motif present immediately upstream of its transmembrane domain (TMD), and subsequent transpeptidation to the CW. These steps expose the N-terminus of PAM to the extracellular milieu (EM) to interact with PAM ligands, e.g., hPg. Previously, we found that inactivation of SrtA showed little reduction in functional binding of PAM to hPg, indicating that PAM retained in the cell membrane (CM) by the TMD nonetheless exposed its N-terminus to the EM. In the current study, we assessed the effects of mutating the Thr4 (P1) residue of the SrtA-cleavage site in PAM (Thr355 in PAM) to delay PAM in the CM in the presence of SrtA. Using rSrtA in vitro, LPSYGEAA and LPSWGEAA peptides were shown to have low activities, while LPSTGEAA had the highest activity. Isolated CM fractions of AP53/DSrtA cells showed that LPSYGEAA and LPSWGEAA peptides were cleaved at substantially faster rates than LPSTGEAA, even in CMs with an AP53/DSrtA/PAM[T355Y] double mutation, but the transpeptidation step did not occur. These results implicate another CM-resident enzyme that cleaves LPSYGEAA and LPSWGEAA motifs, most likely LPXTGase, but cannot catalyze the transpeptidation step. We conclude that the natural P1 (Thr) of the SrtA cleavage site has evolved to dampen PAM from nonfunctional cleavage by LPXTGase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.