Abstract.We consider kinetic schemes for the multidimensional inviscid gas dynamics equations (compressible Euler equations). We prove that the discrete maximum principle holds for the specific entropy. This fixes the choice of the equilibrium functions necessary for kinetic schemes. We use this property to perform a second-order oscillation-free scheme, where only one slope limitation (for three conserved quantities in 1D) is necessary. Numerical results exhibit stability and strong convergence of the scheme.
Abstract.We consider kinetic schemes for the multidimensional inviscid gas dynamics equations (compressible Euler equations). We prove that the discrete maximum principle holds for the specific entropy. This fixes the choice of the equilibrium functions necessary for kinetic schemes. We use this property to perform a second-order oscillation-free scheme, where only one slope limitation (for three conserved quantities in 1D) is necessary. Numerical results exhibit stability and strong convergence of the scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.