A Recommender System (RS) works much better for users when it has more information. In Collaborative Filtering, where users' preferences are expressed as ratings, the more ratings elicited, the more accurate the recommendations. New users present a big challenge for a RS, which has to providing content fitting their preferences. Generally speaking, such problems are tackled by applying Active Learning (AL) strategies that consist on a brief interview with the new user, during which she is asked to give feedback about a set selected items. This article presents a comprehensive study of the most important techniques used to handle this issue focusing on AL techniques. The authors then propose a novel item selection approach, based on Multi-Criteria ratings and a method of computing weights of criteria inspired by a multi-criteria decision making approach. This selection method is deployed to learn new users' profiles, to identify the reasons behind which items are deemed to be relevant compared to the rest items in the dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.