Our aim was to investigate the capability of each of three genes, 16S rRNA, gyrB and aroE, to discriminate, first, among Bacillus thuringiensis H serotypes; second, among B. thuringiensis serovars from the same H serotype; and third, among B. thuringiensis strains from the same serovar. The 16S rRNA, gyrB and aroE genes were amplified from 21 B. thuringiensis H serotypes and their nucleotide sequences determined. Additional strains from four B. cereus sensu lato species were included for comparison purposes. These sequences were pair-wise compared and phylogenetic relationships were revealed. Each of the three genes under study could discriminate among B. thuringiensis H serotypes. The gyrB and aroE genes showed a discriminatory power among B. thuringiensis H serotypes up to nine fold greater than that of the 16S rRNA gene. The gyrB gene was retained for subsequent analyses to discriminate B. thuringiensis serovars from the same H serotype and to discriminate strains from same serovar. A total of 42 B. thuringiensis strains, which encompassed 25 serovars from 12 H serotypes, were analyzed. The gyrB gene nucleotide sequences were different enough as to be sufficient to discriminate among B. thuringiensis serovars from the same H serotype and among B. thuringiensis strains from the same serovar.
This is the first record of protoporphyrinogen oxidase (PPO) inhibitor resistance in eastern Canada, and the second record of a glyphosate-resistant weed in Quebec. In 2016 and 2017, waterhemp seed was collected from 25 locations across Ontario and Quebec. All populations tested positive for imazethapyr resistance. Three-way resistance to imazethapyr, atrazine, and glyphosate was confirmed in 80% of the samples. Additionally, between 2015 and 2017, waterhemp seed was collected from 74 locations in Ontario or Quebec and resistance to lactofen was confirmed in 28% of the seed lots screened.
Background: Due to the accessibility of underlying technologies the 'Omics', in particular genomics, are becoming commonplace in several fields of research, including the study of agricultural pests. The weed community is starting to embrace these approaches; genome sequences have been made available in the past years, with several other sequencing projects underway, as promoted by the International Weed Genome Consortium. Chromosome-scale sequences are essential to fully exploit the power of genetics and genomics.Results: We report such an assembly for Conyza canadensis, an important agricultural weed. Third-generation sequencing technology was used to create a genome assembly of 426 megabases, of which nine chromosome-scale scaffolds cover more than 98% of the entire assembled sequence. As this weed was the first to be identified with glyphosate resistance, and since we do not have a firm handle on the genetic mechanisms responsible for several herbicide resistances in the species, the genome sequence was annotated with genes known to be associated with herbicide resistance. A high number of ABC-type transporters, cytochrome P450 and glycosyltransferases (159, 352 and 181, respectively) were identified among the list of ab initio predicted genes.Conclusion: As C. canadensis has a small genome that is syntenic with other Asteraceaes, has a short life cycle and is relatively easy to cross, it has the potential to become a model weed species and, with the chromosome-scale genome sequence, contribute to a paradigm shift in the way non-target site resistance is studied.
The Bacillus cereus group sensu lato includes six closely-related bacterial species: Bacillus cereus, Bacillus anthracis, Bacillus thuringiensis, Bacillus mycoides, Bacillus pseudomycoides and Bacillus weihenstephanensis. B. thuringiensis is distinguished from the other species mainly by the appearance of an inclusion body upon sporulation. B. weihenstephanensis is distinguished based on its psychrotolerance and the presence of specific signature sequences in the 16S rRNA gene and cspA genes. A total of seven housekeeping genes (glpF, gmK, ilvD, pta, purH, pycA and tpi) from different B. thuringiensis serovars and B. weihenstephanensis strains were amplified and their nucleotide sequences determined. A maximum likelihood phylogenetic tree was inferred from comparisons of the concatenated sequences. B. thuringiensis serovars navarrensis, bolivia and vazensis clustered not with the other B. thuringiensis serovars but rather with the B. weihenstephanensis strains, indicative of a common phylogeny. In addition, specific signature sequences and single nucleotide polymorphisms common to B. thuringiensis serovars navarrensis, bolivia and vazensis and the B. weihenstephanensis strains, and absent in the other B. thuringiensis serovars, were identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.