We present new geochemical and sedimentological data from marginal marine strata of Penarth Bay, south Wales (UK) to elucidate the origin of widespread but enigmatic concentrations of vertebrate hard parts (bonebeds) in marine successions of Rhaetian age (Late Triassic). Sedimentological evidence shows that the phosphatic constituents of the bonebeds were subjected to intense phosphatization in shallow current-dominated settings and subsequently reworked and transported basinward by storms. Interbedded organic-rich strata deposited under quiescent and poorly oxygenated conditions record enhanced phosphorus regeneration from sedimentary organic matter into the water column and probably provided the main source of phosphate required for heavy bonebed clast phosphatization. The stratigraphically limited interval showing evidence for oxygen depletion and accelerated P-cycling coincides with a negative 4‰ organic carbon isotope excursion, which possibly reflects supra-regional changes in carbon cycling and clearly predates the ‘initial isotope excursion’ characterizing many Triassic–Jurassic boundary strata. Our data indicate that Rhaetian bonebeds are the lithological signature of profound, climatically driven changes in carbon cycling and redox conditions and support the idea of a multi-pulsed environmental crisis at the end of the Triassic, possibly linked to successive episodes of igneous activity in the Central Atlantic Magmatic Province. Supplementary material: Sample positions, data table and a detailed stratigraphic log from the upper Triassic of Penarth Bay, south Wales, UK are available at http://www.geolsoc.org.uk/SUP18510 .
The Fe-Mn oxide fraction leached from deep-sea sediments has been increasingly used to reconstruct the Nd isotope composition of deep water masses, that can be used to track changes in oceanic circulation with a high temporal resolution. Application of this archive to reconstruct the Nd isotope composition of bottom seawater in shallow shelf environments remained however to be tested. Yet as the Nd isotope composition of seawater on continental margins is particularly sensitive to changes in erosional inputs, establishment of neritic seawater Nd isotope evolution around areas of deep water formation would be useful to discriminate the influence of changes in oceanic circulation and in isotopic composition of erosional inputs on the Nd isotope record of deep waters. The purpose of this study is to test the potential of Fe-Mn coatings leached from foraminifera tests to reconstruct the Nd isotope composition of seawater in shelf environments for deep-time intervals. Albian to Turonian samples from two different outcrops have been recovered, from the Paris Basin (Wissant section, northern France) and from the Western Interior Seaway (Hot Spring, South Dakota, USA), that were deposited in epicontinental seas. Rare Earth Element (REE) spectra enriched in middle REEs in the foraminifera leach at Wissant highlight the presence of Fe-Mn oxides. The similarity of the Nd isotopic signal of the Fe-Mn oxide fraction leached from foraminifera tests with that of fish teeth suggests that Fe-Mn oxides coating foraminifera can be good archives of shelf bottom seawater Nd isotopic composition. Inferred bottom shelf water Nd isotope compositions at Wissant range from À8.5 to À9.7 e-units, about 1.5-2 e-units higher than that of the contemporaneous local detrital fraction. At Hot Spring, linear REE spectra characterizing foraminifera leach may point to an absence of authigenic marine Fe-Mn oxide formation in this area during the Late 0016-7037/$ -see front matter Ó Geochimica et Cosmochimica Acta 99 (2012) [39][40][41][42][43][44][45][46][47][48][49][50][51][52][53][54][55][56] Cenomanian-Early Turonian, consistent with dysoxic to anoxic conditions at Hot Spring, contemporaneous to an Oceanic Anoxic Event. The similarity of the Nd isotopic signal of the carbonate matrix of foraminifera with that of fish teeth suggests that it records the Nd isotope composition of bottom shelf seawater as well. Inferred bottom shelf water Nd isotope compositions at Hot Spring are quite radiogenic, between À7 and À6 e-units, about 2.5-4 e-units higher than that of the contemporaneous local detrital fraction. In contrast, in both sections Fe-Mn oxides leached directly from the decarbonated sediment tend to yield a less radiogenic Nd isotopic composition, typically between 0.2 and 0.8 e-units lower, that is intermediate between that of fish teeth and of the detrital fraction. This suggests the contribution of pre-formed continental Fe-Mn oxides to the Nd isotopic signal, along with authigenic marine oxides, or a detrital contamination during leaching.
Abstract. The 58–51 Ma interval was characterized by a long-term increase of global temperatures (+4 to +6 °C) up to the Early Eocene Climate Optimum (EECO, 52.9–50.7 Ma), the warmest interval of the Cenozoic. It was recently suggested that sustained high atmospheric pCO2, controlling warm early Cenozoic climate, may have been released during Neo-Tethys closure through the subduction of large amounts of pelagic carbonates and their recycling as CO2 at arc volcanoes ("carbonate subduction factory"). To analyze the impact of Neo-Tethys closure on early Cenozoic warming, we have modeled the volume of subducted sediments and the amount of CO2 emitted at active arc volcanoes along the northern Tethys margin. The impact of calculated CO2 fluxes on global temperature during the early Cenozoic have then been tested using a climate carbon cycle model (GEOCLIM). We first show that CO2 production may have reached up to 1.55 × 1018 mol Ma−1 specifically during the EECO, ~ 4 to 37 % higher that the modern global volcanic CO2 output, owing to a dramatic India–Asia plate convergence increase. In addition to the background CO2 degassing, the subduction of thick Greater Indian continental margin carbonate sediments at ~ 55–50 Ma may also have led to additional CO2 production of 3.35 × 1018 mol Ma−1 during the EECO, making a total of 85 % of the global volcanic CO2 outgassed. However, climate modelling demonstrates that timing of maximum CO2 release only partially fit with the EECO, and that corresponding maximum pCO2 values (750 ppm) and surface warming (+2 °C) do not reach values inferred from geochemical proxies, a result consistent with conclusions arise from modelling based on other published CO2 fluxes. These results demonstrate that CO2 derived from decarbonation of Neo-Tethyan lithosphere may have possibly contributed to, but certainly cannot account alone for early Cenozoic warming, including the EECO. Other commonly cited sources of excess CO2 such as enhanced igneous province volcanism also appear to be up to one order of magnitude below fluxes required by the model to fit with proxy data of pCO2 and temperature at that time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.