Metal-organic frameworks are crystalline nanostructures formed by a metal interspersed by an organic binder. These metal-organic materials are examples of nanomaterials applied to textile material in search of new functionalized textiles. Cotton is a cellulosic fiber of great commercial importance, and has good absorption capacity and breathability; however, due to these characteristics, it is susceptible to the development of microorganisms on its surface. This work aims to analyze how the direct synthesis of HKUST-1 in cotton fabric modifies the chemical and physical properties. The material obtained was characterized by scanning electron microscopy to obtain its morphology, by spectrophotometry CIE L*a*b* to verify the color change, by a biological test to verify its resistance to microorganisms and, finally, by a unidirectional traction test to verify the change in its mechanical resistance. Thereby, it was possible to observe the formation of MOFs with the morphology of nanorods, and also, with regard to HKUST-1 in the cotton fabric, when applied, an elimination percentage higher than 99% was observed for both bacteria, E. coli and S. aureus. The presence of MOF was detected even after washing, however, the loss of 75% in the mechanical resistance of the material makes its potential for textile finishing unworkable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.