Tissue clearing is currently revolutionizing neuroanatomy by enabling organ-level imaging with cellular resolution. However, currently available tools for data analysis require a significant time investment for training and adaptation to each laboratory's use case, which limits productivity. Here, we present FriendlyClearMap, an integrated toolset that makes ClearMap1 and ClearMap2's CellMap pipeline easier to use, extends its functions, and provides Docker Images from which it can be run with minimal time investment. We also provide detailed tutorials for each step of the pipeline. For more precise alignment, we add a landmark-based atlas registration to ClearMap's functions as well as include young mouse reference atlases for developmental studies. We provide alternative cell segmentation method besides ClearMap's threshold-based approach: Ilastik's Pixel Classification, importing segmentations from commercial image analysis packages and even manual annotations. Finally, we integrate BrainRender, a recently released visualization tool for advanced 3D visualization of the annotated cells. As a proof-of-principle, we use FriendlyClearMap to quantify the distribution of the three main GABAergic interneuron subclasses (Parvalbumin+, Somatostatin+, and VIP+) in the mouse fore- and midbrain. For PV+ neurons, we provide an additional dataset with adolescent vs. adult PV+ neuron density, showcasing the use for developmental studies. When combined with the analysis pipeline outlined above, our toolkit improves on the state-of-the-art packages by extending their function and making them easier to deploy at scale.
Background Tissue clearing is currently revolutionizing neuroanatomy by enabling organ-level imaging with cellular resolution. However, currently available tools for data analysis require a significant time investment for training and adaptation to each laboratory’s use case, which limits productivity. Here, we present FriendlyClearMap, an integrated toolset that makes ClearMap1 and ClearMap2’s CellMap pipeline easier to use, extends its functions, and provides Docker Images from which it can be run with minimal time investment. We also provide detailed tutorials for each step of the pipeline. Findings For more precise alignment, we add a landmark-based atlas registration to ClearMap’s functions as well as include young mouse reference atlases for developmental studies. We provide an alternative cell segmentation method besides ClearMap’s threshold-based approach: Ilastik’s Pixel Classification, importing segmentations from commercial image analysis packages and even manual annotations. Finally, we integrate BrainRender, a recently released visualization tool for advanced 3-dimensional visualization of the annotated cells. Conclusions As a proof of principle, we use FriendlyClearMap to quantify the distribution of the 3 main GABAergic interneuron subclasses (parvalbumin+ [PV+], somatostatin+, and vasoactive intestinal peptide+) in the mouse forebrain and midbrain. For PV+ neurons, we provide an additional dataset with adolescent vs. adult PV+ neuron density, showcasing the use for developmental studies. When combined with the analysis pipeline outlined above, our toolkit improves on the state-of-the-art packages by extending their function and making them easier to deploy at scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.