Inertial sensor-based measurements of lower body kinematics in football players may improve physical load estimates during training sessions and matches. However, the validity of inertial-based motion analysis systems is specific to both the type of movement and the intensity at which movements are executed. Importantly, such a system should be relatively simple, so it can easily be used in daily practice. This paper introduces an easy-to-use inertial-based motion analysis system and evaluates its validity using an optoelectronic motion analysis system as a gold standard. The system was validated in 11 football players for six different football specific movements that were executed at low, medium, and maximal intensity. Across all movements and intensities, the root mean square differences (means ± SD) for knee and hip flexion/extension angles were 5.3° ± 3.4° and 8.0° ± 3.5°, respectively, illustrating good validity with the gold standard. In addition, mean absolute flexion/extension angular velocities significantly differed between the three movement intensities. These results show the potential to use the inertial based motion analysis system in football practice to obtain lower body kinematics and to quantify movement intensity, which both may improve currently used physical load estimates of the players.
Purpose: Neuromuscular fatigue is considered to be important in the etiology of hamstring strain injuries in football. Fatigue is assumed to lead to decreases in hamstring contractile strength and changes in sprinting kinematics, which would increase hamstring strain injury risk. Therefore, the aim was to examine the effects of football-specific fatigue on hamstring maximal voluntary torque (MVT) and rate of torque development (RTD), in relation to alterations in sprinting kinematics. Methods: Ten amateur football players executed a 90-min running-based football match simulation. Before and after every 15 min of simulated play, MVT and RTD of the hamstrings were obtained in addition to the performance and lower body kinematics during a 20-m maximal sprint. Linear mixed models and repeated measurement correlations were used to assess changes over time and common within participant associations between hamstring contractile properties and peak knee extension during the final part of the swing phase, peak hip flexion, peak combined knee extension and hip flexion, and peak joint angular velocities, respectively. Results: Hamstring MVT and sprint performance were significantly reduced by 7.5% and 14.3% at the end of the football match simulation. Unexpectedly, there were no indications for reductions in RTD when MVT decrease was considered. Decreases in hamstring MVT were significantly correlated to decreases in peak knee angle (R = 0.342) and to increases in the peak combined angle (R = −0.251). Conclusions: During a football match simulation, maximal voluntary isometric hamstring torque declines. This decline is related to greater peak knee extension and peak combined angle during sprint running, which indicates a reduced capacity of the hamstrings to decelerate the lower leg during sprint running with fatigue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.