Intracellular transport depends on cooperation between distinct motor proteins. Two anterograde intraflagellar transport (IFT) motors, heterotrimeric kinesin-II and homodimeric OSM-3, cooperate to move cargo along Caenorhabditis elegans cilia. Here, using quantitative fluorescence microscopy, with single-molecule sensitivity, of IFT in living strains containing single-copy transgenes encoding fluorescent IFT proteins, we show that kinesin-II transports IFT trains through the ciliary base and transition zone to a 'handover zone' on the proximal axoneme. There, OSM-3 gradually replaces kinesin-II, yielding velocity profiles inconsistent with in vitro motility assays, and then drives transport to the ciliary tip. Dissociated kinesin-II motors undergo rapid turnaround and recycling to the ciliary base, whereas OSM-3 is recycled mainly to the handover zone. This reveals a functional differentiation in which the slower, less processive kinesin-II imports IFT trains into the cilium and OSM-3 drives their long-range transport, thereby optimizing cargo delivery.
SUMMARYSensory cilia are assembled and maintained by kinesin-2-dependent intraflagellar transport (IFT). We investigated if two C. elegans α- and β-tubulin isotypes, identified via mutants that lack their cilium distal segments, are delivered to their assembly sites by IFT. Mutations in conserved residues in both tubulins destabilize distal singlet microtubules (MTs). One isotype, TBB-4, assembles into MTs at the tips of the axoneme core and distal segments, where the MT tip-tracker, EB1, is found, and localizes all along the cilium, whereas the other, TBA-5, concentrates in distal singlets. IFT assays, FRAP analysis and modeling suggest that the continual transport of sub-stoichiometric numbers of these tubulin subunits by the IFT machinery can maintain sensory cilia at their steady state length.
Intraflagellar transport (IFT) is a form of motor-dependent cargo transport that is essential for the assembly, maintenance and length-control of cilia, which play critical roles in motility, sensory reception and signal transduction in virtually all eukaryotic cells. During IFT, anterograde kinesin-2 and retrograde IFT-dynein motors drive the bidirectional transport of IFT trains that deliver cargo, for example axoneme precursors such as tubulins as well as molecules of the signal transduction machinery, to their site of assembly within the cilium. Following its discovery in Chlamydomonas, IFT has emerged as a powerful model system for studying general principles of motor-dependent cargo transport and we now appreciate the diversity that exists in the mechanism of IFT within cilia of different cell-types. The absence of heterotrimeric kinesin-2 function, for example, causes a complete loss of both IFT and cilia in Chlamydomonas but following its loss in C. elegans, where its primary function is loading the IFT machinery into cilia, homodimeric kinesin-2-driven IFT persists and assembles a full-length cilium. Generally, heterotrimeric kinesin-2 and IFT-dynein motors are thought to play widespread roles as core IFT-motors whereas homodimeric kinesin-2 motors are accessory motors that mediate different functions in a broad range of cilia, in some cases contributing to axoneme assembly or the delivery of signaling molecules but in many other cases their ciliary functions, if any, remain unknown. In this review, we focus on mechanisms of motor action, motor cooperation and motor-dependent cargo delivery during IFT.
Kymographs are mostly analyzed by visual inspection, a time-consuming task prone to user bias. The freely available software tools KymographClear and KymographDirect, respectively, generate kymographs and perform automated, quantitative analysis of kymographs obtained from a wide range of dynamic events in life science.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.