The increasing bandwidth requirement of new wireless applications has lead to standardization of the millimeter wave spectrum for high-speed wireless communication. The millimeter wave spectrum is part of 5G and covers frequencies between 30 and 300 GHz that correspond to wavelengths ranging from 10 to 1 mm. Although millimeter wave is often considered as a communication medium, it has also proved to be an excellent 'sensor', thanks to its narrow beams, operation across a wide bandwidth, and interaction with atmospheric constituents. In this paper, which is to the best of our knowledge the first review that completely covers millimeter wave sensing application pipelines, we provide a comprehensive overview and analysis of different basic application pipeline building blocks, including hardware, algorithms, analytical models, and model evaluation techniques. The review also provides a taxonomy that highlights different millimeter wave sensing application domains. By performing a thorough analysis, complying with the systematic literature review methodology and reviewing 165 papers, we not only extend previous investigations focused only on communication aspects of the millimeter wave technology and using millimeter wave technology for active imaging, but also highlight scientific and technological challenges and trends, and provide a future perspective for applications of millimeter wave as a sensing technology.
The increasing bandwidth requirement of new wireless applications has lead to standardization of the millimeter wave spectrum for high-speed wireless communication. The millimeter wave spectrum is part of 5G and covers frequencies between 30 and 300 GHz corresponding to wavelengths ranging from 10 to 1 mm. Although millimeter wave is often considered as a communication medium, it has also proved to be an excellent 'sensor', thanks to its narrow beams, operation across a wide bandwidth, and interaction with atmospheric constituents. In this paper, which is to the best of our knowledge the first review that completely covers millimeter wave sensing application pipelines, we provide a comprehensive overview and analysis of different basic application pipeline building blocks, including hardware, algorithms, analytical models, and model evaluation techniques. The review also provides a taxonomy that highlights different millimeter wave sensing application domains. By performing a thorough analysis, complying with the systematic literature review methodology and reviewing 165 papers, we not only extend previous investigations focused only on communication aspects of the millimeter wave technology and using millimeter wave technology for active imaging, but also highlight scientific and technological challenges and trends, and provide a future perspective for applications of millimeter wave as a sensing technology.
Over the past years, device-free sensing has received considerable attention due to its unobtrusiveness. In this regard, context recognition using WiFi Channel State Information (CSI) data has gained popularity, and various techniques have been proposed that combine unobtrusive sensing and deep learning to accurately detect various contexts ranging from human activities to gestures. However, research has shown that the performance of these techniques significantly degrades due to change in various factors including sensing environment, data collection configuration, diversity of target subjects, and target learning task (e.g., activities, gestures, emotions, vital signs). This problem, generally known as the domain change problem, is typically addressed by collecting more data and learning the data distribution that covers multiple factors impacting the performance. However, activity recognition data collection is a very labor-intensive and time consuming task, and there are too many known and unknown factors impacting WiFi CSI signals. In this paper, we propose a domain-independent generative adversarial network for WiFi CSI based activity recognition in combination with a simplified data pre-processing module. Our evaluation results show superiority of our proposed approach compared to the state of the art in terms of increased robustness against domain change, higher accuracy of activity recognition, and reduced model complexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.