van der Sanden, L.J.; Nogueira Bastos, J.P.; Voeten, J.P.M.; Geilen, M.C.W.; Reniers, M.A.; Basten, T.; Jacobs, J.; Schiffelers, R.R.H. Published in:Proceedings of the 2016 Forum on specification and Design Languages, FDL 2016, Bremen, Germany, September 14-16, 2016 Published: 01/09/2016 Document VersionPublisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)Please check the document version of this publication:• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.• The final author version and the galley proof are versions of the publication after peer review.• The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication Citation for published version (APA):van der Sanden, L. J., Nogueira Bastos, J. P., Voeten, J. P. M., Geilen, M. C. W., Reniers, M. A., Basten, T., ... Schiffelers, R. R. H. (2016). Compositional specification of functionality and timing of manufacturing systems. In Proceedings of the 2016 Forum on specification and Design Languages, FDL 2016, Bremen, Germany, September 14-16, 2016 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Abstract-This paper introduces a formal modeling approach for compositional specification of both functionality and timing of manufacturing systems. Functionality aspects can be considered orthogonally to timing aspects. The functional aspects are specified using two abstraction levels; high-level activities and lower level actions. Design of a functionally correct controller is possible by looking only at the activity level, abstracting from the different execution orders of actions and their timing. As a result, controller design can be performed on a much smaller state space compared to an explicit model where timing and actions are present. The performance of the controller can be analyzed and optimized by taking into account the timing characteristics. Since formal semantics are given in terms of a (max, +) sta...
One of the challenges in the design of supervisors with optimal throughput for manufacturing systems is the presence of behavior outside the control of the supervisor. Uncontrollable behavior is typically encountered in the presence of (user) inputs, external disturbances, and exceptional behavior. This paper introduces an approach for the modeling and synthesis of a throughput-optimal supervisor for manufacturing systems with partially-controllable behavior on two abstraction levels. Extended finite automata are used to model the high abstraction level in terms of system activities, where uncontrollability is modeled by the presence of uncontrollable activities. In the lower abstraction level, activities are modeled as directed acyclic graphs that define the constituent actions and dependencies between them. System feedback from the lower abstraction level, including timing, is captured using variables in the extended finite automata of the higher abstraction level. For throughput optimization, game-theoretic methods are employed on the state space of the synthesized supervisor to determine a guarantee to the lower-bound system performance. This result is also used in a new method to automatically compute a throughput-optimal controller that is robust to the uncontrollable behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.