Research on the role of serotonin (5-hydroxytryptamine, 5-HT) in the function of the enteric nervous system has been impeded by the lack of specific inhibitors of the enteric neural actions of 5-HT. Saturable, reversible, high affinity enteric binding sites for 3H-5-HT have recently been characterized and radioautographically located. Affinity for the 3H-5-HT binding site requires an indole ring substituted with a free hydroxyl group. These 3H-5-HT binding sites have been proposed to be enteric neural 5-HT receptors. This hypothesis was tested in the current study by comparing the ability of compounds to inhibit the binding of 3H-5-HT with their electrophysiologically determined actions on myenteric neurons. 5-Methoxytryptamine did not inhibit the binding of 3H-5-HT to enteric membranes and neither mimicked nor antagonized the effects of 5-HT on the membrane potential of myenteric neurons. Two dipeptides of 5-hydroxytryptophan, N-acetyl- and N-hexanoyl-5-hydroxytryptophyl-5-hydroxytryptophan amide (5-HTP-DP and N-hex-5-HTP-DP) inhibited the binding of 3H-5-HT (K1 = 0.25 microM for 5-HTP-DP and 1.19 microM for N-hex-5-HTP-DP). 5-HTP-DP applied by pressure microejection or superfusion (10 microM) antagonized the slow postsynaptic depolarization of myenteric neurons evoked by microejection of 5-HT. 5-HTP-DP also blocked the 5-HT-induced presynaptic reduction in amplitude of nicotinic fast synaptic potentials; however, 5-HTP-DP itself did not affect these responses. Moreover, 5-HTP-DP also failed to affect responses of myenteric neurons to microejected substance P, their muscarinic response to acetylcholine, or antidromic action potentials. In contrast, both dipeptides blocked the slow synaptic potentials seen in type II/AH neurons following stimulation of fiber tracts in interganglionic connectives. These data support the hypotheses that enteric 3H-5-HT binding sites are enteric neural 5-HT receptors, that dipeptides of 5-hydroxytryptophan are specific antagonists at these receptors, and that 5-HT is one of the mediators of slow synaptic potentials in the myenteric plexus.
Peripheral neural 5-hydroxytryptamine (5-HT) receptors are different from both classes 5-HT1 and 5-HT2, which have been described from studies of 5-HT receptors in the brain. Recently, it has been shown that, as in the CNS, there is more than a single type of neural receptor for 5-HT in the enteric nervous system. One of these, called 5-HT1P, has a high affinity for 3H-5-HT, initiates a long-lasting depolarization of enteric neurons associated with an increase in membrane resistance, and is the physiological receptor through which enteric serotoninergic neurons mediate slow EPSPs. The other receptor, called 5-HT3 (5-HT2P), does not bind 3H-5-HT with high affinity, and initiates a brief depolarization of enteric neurons with decreased input resistance, but a physiological action of 5-HT mediated by these receptors has not yet been identified. Hydroxylated indalpines have been found to be agonists at 5-HT1P receptors. We have now examined 5-HT1P receptors using 5-hydroxyindalpine (5-OHIP) as a probe. The action of 5-OHIP on enteric neurons was determined electrophysiologically and compared with that of 5-HT; the binding of 3H-5-OHIP to isolated enteric membranes was studied by rapid filtration, and to frozen sections of tissue by radioautography. 3H-5-OHIP binding was compared with that of 3H-5-HT. 5-OHIP, like 5-HT, induced a triphasic response in most enteric neurons: an initial short-lived depolarization, during which input resistance fell, followed by recovery, and then a long-lasting depolarization, during which the input resistance increased. 5-OHIP bound saturably, reversibly, and with high affinity to enteric membranes (Kd = 7.6 +/- 0.7 nM; Bmax = 76 +/- 14 fmol/mg protein). Binding of 3H-5-OHIP was not inhibited by agents that bind to alpha- or beta-adrenoceptors, nicotinic or muscarinic receptors, histamine H1 or H2 receptors, or 5-HT1(A,B,C, or D), 5-HT2, or 5-HT3 receptors, but was displaced by substances, such as hydroxylated indoles and a dipeptide of 5-hydroxytryptophan (5-HTP-DP), that antagonize the binding of 3H-5-HT to enteric membranes or tissue sections. It is concluded that 5-OHIP is an agonist at peripheral neural 5-HT1P receptors and can be used to label these receptors selectively outside the brain. Radioautographs demonstrated enteric 5-HT1P receptors in the lamina propria of the intestinal mucosa and in the submucosal and myenteric plexuses. Extraenteric 5-HT1P receptors were also found in the skin and heart. It is suggested that 5-HT1P receptors may be found on subtypes of primary afferent nerve fibers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.