Glutamate, the major excitatory neurotransmitter in the CNS, is implicated in both normal neurotransmission and excitotoxicity. Numerous in vitro findings indicate that the ionotropic glutamate receptor, AMPAR, can rapidly traffic from intracellular stores to the plasma membrane, altering neuronal excitability. These receptor trafficking events are thought to be involved in CNS plasticity as well as learning and memory. AMPAR trafficking has recently been shown to be regulated by glial release of the proinflammatory cytokine tumor necrosis factor ␣ (TNF␣) in vitro. This has potential relevance to several CNS disorders, because many pathological states have a neuroinflammatory component involving TNF␣. However, TNF␣-induced trafficking of AMPARs has only been explored in primary or slice cultures and has not been demonstrated in preclinical models of CNS damage. Here, we use confocal and image analysis techniques to demonstrate that spinal cord injury (SCI) induces trafficking of AMPARs to the neuronal membrane. We then show that this effect is mimicked by nanoinjections of TNF␣, which produces specific trafficking of GluR2-lacking receptors which enhance excitotoxicity. To determine if TNF␣-induced trafficking affects neuronal cell death, we sequestered TNF␣ after SCI using a soluble TNF␣ receptor, and significantly reduced both AMPAR trafficking and neuronal excitotoxicity in the injury penumbra. The data provide the first evidence linking rapid TNF␣-induced AMPAR trafficking to early excitotoxic secondary injury after CNS trauma in vivo, and demonstrate a novel way in which pathological states hijack mechanisms involved in normal synaptic plasticity to produce cell death.
Sublethal periods of hypoxia or ischemia can induce adaptive mechanisms to protect against subsequent lethal ischemic insults in a process known as ischemic preconditioning. In the present study, we developed a murine model of cerebral preconditioning using several common strains of adult mice. Animals were exposed to sublethal hypoxia (11% oxygen for 2 h) 48 h prior to a 90 min period of transient focal middle cerebral artery occlusion, induced by an intraluminal filament; injury was assessed 24 h later by TTC staining. Infarct volume in hypoxia-preconditioned animals was reduced 46%, 58%, and 64% in C57Bl/6, 129SvEv, and Swiss-Webster ND4 mice relative to their respective untreated controls. This non-invasive murine model of ischemic tolerance should be useful for elucidating the molecular basis of this protection using transgenic and knockout mice.
Subarachnoid hemorrhage (SAH) can lead to devastating neurological outcomes, and there are few pharmacologic treatments available for treating this condition. Both animal and human studies provide evidence of inflammation being a driving force behind the pathology of SAH, leading to both direct brain injury and vasospasm, which in turn leads to ischemic brain injury. Several inflammatory mediators that are elevated after SAH have been studied in detail. While there is promising data indicating that blocking these factors might benefit patients after SAH, there has been little success in clinical trials. One of the key factors that complicates clinical trials of SAH is the variability of the initial injury and subsequent inflammatory response. It is likely that both genetic and environmental factors contribute to the variability of patients' post-SAH inflammatory response and that this confounds trials of anti-inflammatory therapies. Additionally, systemic inflammation from other conditions that affect patients with SAH could contribute to brain injury and vasospasm after SAH. Continuing work on biomarkers of inflammation after SAH may lead to development of patient-specific anti-inflammatory therapies to improve outcome after SAH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.